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SYSTEM IDENTIFICATION OF

DAMPED TRUSS-LIKE SPACE STRUCTURES

SASAN ARMAND

National Aeronautics and Space Administration

Lewis Research Center

Cleveland, Ohio 44135

ABSTRACT

A spacecraft payload flown on a launch vehicle experiences dynamic loads.

The dynamic loads are caused by various phenomena ranging from the start-up of the

launch vehicle engine to wind gusts. A spacecraft payload should be designed to meet

launch vehicle dynamic loads. One of the major steps taken towards determining the

dynamic loads is to correlate the finite element model of the spacecraft with the test

results of a modal survey test. A test-verified finite element model of the spacecraft

should possess the same spatial properties (stiffness, mass, and damping) and modal

properties (frequencies and mode shapes) as the test hardware representing the

spacecraft. The test-verified and correlated finite element model of the spacecraft is

then coupled with the finite element model of the launch vehicle for analyses of loads

and stress.

Modal survey testing, verification of a f'mite element model, and modification

of the finite element model to match the modal survey test results can easily be

accomplished if the spacecraft structure is simple. However, this is rarely the case. A

simple structure here is defined as a structure where the influence of nonlinearity

between force and displacement (uncertainty in a test, for example, with errors in input

and output), and the influence of damping (structural, coulomb, and viscous) are not

pronounced. The objective of this study is to develop system identification and

correlation methods with the focus on the structural systems that possess

nonproportional damping.

Two approaches to correct the nonproportional damping matrix of a truss

structure were studied, and have been implemented on truss-like structures such as the

National Aeronautics and Space Administration's space station Iruss. The results of this

study showed nearly 100 percent improvement of the correlated eigensystem over the

analytical eigensystem. The first method showed excellent results with up to three

modes used in the system identification process. The second method could handle more

modes, but required more computer usage time, and the results were less accurate than

those of the first method.
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CHAPTER I

INTRODUCTION

Hooke's law states that in a time-independent study of the stress-strain curve

for structures, a linear relationship exists which defines the elastic coefficients between

the stress and strain tensors. The material of such structures is linear, elastic, and

isotropic. Most static structures that operate within a small range of stress and strain

possess such properties, and follow Hooke's law. The time--dependent stress-strain

curve for a vibrating structure also possesses a linear relationship, and thus follows

Hook's law; that is, as long as the range of the elastic portion of motion is small when

compared to the overall size of the structure in question, the structure is considered

linear. This research study will focus only on structures which follow Hook's law. The

Lagrengian coordinate system is used here rather than the Eulerian coordinate system.

The most direct way of deriving the equation of motion is to use D'Alembert's

principle, which states that when a structure is placed in a dynamic environment, the

resultant forces will be in equilibrium with the inertia forces of the structure. However,

the contribution of damping, which is the emphasis of this research study, can not be

fully explained when D'Alembert's principle is used. When using D'Alembert's

principle, the contribution of damping in the equation of motion appears to be a force

that resists the motion. Therefore, the contribution of damping is similar to those of

inertia and strain. However, damping offers more than a resisting force. In an effort to

better explain the contribution and the role of damping in the equation of motion,

Hamilton's principle is used. Hamilton's principle states that the variation of kinetic and

potential energy, plus the variation of the work done by the nonconservative forces

between any two time instances, must equal zero. Hamilton's principle is meant to be

used when the structural system is complex, and problems with establishing vectorial

equations may be unavoidable. However, since Hamilton's principle deals with the

energy quantities of the structural system and damping forces absorb energy, this

principle is used to derive the equation of motion. The variational form of Hamilton's

principle can be expressed as (Clough, 1975):

t 2

I 6(T - lOdt +

t_

where :

T=

V=

Wnc =

6=

t 2

1 6Wnc dt = 0

tl

kinetic energy of the system

potential energy (due to strain and external forces) of the system

work done by nonconservative forces
variation taken during two time intervals

(1.1)

The kinetic energy of the system is defined as:



1 .2
T = _mq

where :

m = mass of the system

= resultant velocity vector

(1.2)

The potential energy for a structural system with no hidden stresses such as

preload, can be expressed as the strain energy, U, of the system:

V = U = "_tq 2

where :

k = stiffness coefficient

q = resultant displacement vector

(1.3)

Since the kinetic energy and the potential energy of the system have been

defined, the only way to model and introduce the energy due to damping in equation

(1.1) is through nonconservative forces, that is:

¢_W= = F(t)6q - cil6 q

where •

F(t) = externally applied forcing function

6q = virtual displacement

c = damping coefficient

(1.4)

According to equations (1.1) and (1.4), if all nonconservative forces equal zero,

there is no energy-absorbing media that will zero out the vibration of the structural

system. Thus, the role of damping force is not only to resist the motion of the structural

system (in accordance with D'Alembert's principle), but also to zero out its vibration (in

accordance with Hamilton's principle).

The matrix form of the equation of motion of a structural system can be

expressed, using either D'Alembert's principle or Hamilton's principle, as:

[M]#- [C]q- [K]q = IF] (L5)

In this study, only the homogeneous (steady state) portion of equation (1.5) is

considered since the modal properties of the structural system can be determined from
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the mass, damping and stiffness matrices. The force vector determines the response of

the system when a forcing function is applied to the system. Therefore, equation (1.5)

becomes:

[M]#- [C]q- [Klq = [01 (1.6)

In the majority of papers that were reviewed for this research study, the

influence of damping was neglected. To leave damping offofthe equation of motion is a

mathematical convenience, which at times is justified. For instance, if the driving

frequency is not in the neighborhood of the natural frequency of the structural system

there may not be enough time for the effect of damping to become noticeable with

harmonic excitation, when the damping is smaU and the free vibration is over a short

interval of time (Meirovitch, 1967). The flight-like structural systems considered in

this research study, however, axe excited during a long period of launch (approximately

10 to 20 minutes), and the transient forces applied to the structure are not harmonic in

nature. Also, because of rapid changes in the transient forces applied to the flight

structure, the steady state portion of the excitation is dominated by the transient portion.

Therefore, during such conditions, the influence of damping should not be neglected.

There are several ways to represent damping in the equation of motion. The

most important type of damping is viscous damping, where the damping forces are

proportional to velocity in magnitude and they act in the opposite direction to the

velocity vector. Another important type of damping is structural or hysteritic damping.

This type of damping is associated with internal friction dissipation of material, and it is

due to cyclic strain. Coulomb damping is another way of including damping in the

equation of motion. Coulomb damping is similar to viscous damping. The difference is

that the magnitude of damping force is constant over the range of motion and velocity in

Coulomb damping (Meirovitch, 1967). In this research study, damping is represented

by linear viscous damping.

The most popular method used to introduce damping into the equation of

motion is attributed to Rayleigh (Weaver, 1987). In this method, the coefficients of the

damping matrix are proportional to the stiffness matrix and/or to the mass matrix. In this

case, the equation of motion can be decoupled using the same transformation as that for

the undamped system. However, in practical structures proportional damping

properties do not exist, and the damping coefficients are not proportional to either the

mass matrix or the stiffness matrix. In this research study, the damping matrix is

nonproportional damping.

One of the major sources of damping is the friction experienced by the

connections of a structure. Other sources consist of material damping, such as air



resistance.As an example, when considering truss-like structures, a drag force which

resists the motion of the structure is produced from the friction of the rubbing action in

the connections. This drag force is proportional to the velocity of motion, and thus it can

be represented by a viscous damper (Hurty, 1965). The presence of friction has a minor

role in the steady state response of the excitation for a periodic forcing function, and thus

it can be ignored (Weaver, 1987).

The objectives of this research study are the following:

1) To analytically derive the mathematical equations for system identification

and correlation of the nonproportional damping matrix of a finite element model. Two

paths (as will be discussed in chapter HI) wiU be taken to identify a structural system.

2) To fine-tune the methods devised in this study to correct the damping matrix

of the finite element model of a space truss-like structure. Two classes of space trusses

will be studied, namely a plane three-bay truss subsequently referred to throughout this

study as a 12-BAR truss, and a three-bay three-dimensional truss subsequently

referred to throughout this study as a 44-BAR truss similar to that of Space Station

Freedom. MSC/NASTRAN, a general purpose f'mite element analysis package, will he

used to generate the stiffness, mass, and damping matrices. Then, these matrices will be

used in the system identification methods of this study. In an effort to produce test-like

results, simulation studies of the finite element model of the trusses will be performed.

The damping and stiffness coefficients of the two classes of trusses will be varied, and

the resulting modal properties, which will represent the test modal properties, will be

used in conjunction with the finite element model of the truss to correct the damping and

stiffness matrices of the finite element model.

3) To compare the two methods for correction of the damping and stiffness

matrices with each other and with the test results for accuracy and robustness. The basis

for comparison will be the matrices representing the frequency, the eigenvector, the

eigenvelocity, and the damping coefficients.

4) To examine the methods for correction of the damping matrix by using

highly damped truss structures. A highly damped truss structure, as used here, is defined

as a structure whose real and imaginary portions of the vibration frequency possess the

same order of magnitude.

5) To generate the methodology in identification of vibration modes

(eigenvectors and eigenvelocities) based on the kinetic energy of the test modes in

question.

6) To generate the methodology for combining the test modes which possess

the highest kinetic energy in system identification and correction of the damping matrix

of the finite element model.



CHAPTER II

LITERATURE REVIEW

2.1 Introduction

The idea of using modal testing to validate and verify a finite element model has

been investigated by other researchers. The results of their work provided a starting

point for this present study and will be discussed later in this chapter. Of the many

approaches suggested in earlier work, two approaches that considered the influence of

damping will be reported. Other innovative approaches that ignored the influence of

damping will also be reviewed in this study. The author will also explore their

application to model refinement. Overall, the majority of the structural modification

methods explored by earlier researchers ignore the influence of damping completely.

In an effort to fred out why the influence of damping was not considered in the

majority of earlier research, the author decided to contact a researcher who consistently

ignored damping. The most reasonable choice for this consultation was Benjamin Wada

of the National Aeronautics and Space Administration because he has been involved in

spacecraft development, modal survey testing, and system identification. The author

spoke to Mr. Wada on the telephone in July of 1992. His opinion was that the

measurement of damping coefficients is not practical. Furthermore, when damping is

introduced to the equation of motion, the complex modes and mode shapes introduce a

larger complexity in structural modification, and thus the influence of damping is

neglected. However, the opinions of other researchers have consistently indicated that

the measured modes in any structure are complex in nature. The complex modes in a

structure verify the existence of the nonproportional damping.

In response to the conversation with Mr. Wada, the author proposes a

subsystem-level test for samples of the truss joints. This test can include a stiffness test

to measure influence-coefficients in six orthogonal directions, and a modal survey test

to identify the spatial properties of the joint. The stiffness test will help in the adjustment

and modification of the stiffness matrix of the finite element model of the truss. The

modal survey test will aid the measurement of the damping coefficients. If a harmonic

forcing function is applied to the joint, damping can be evaluated easily by establishing

resonance and adjusting the input frequency such that the response data is 90 ° out of

phase with the applied force (Clough, 1975). When this 90 ° phase-angle is established,

the response caused by the displacement vector and the acceleration vector is zero.

Thus, only the velocity vector or damping force will contribute to the motion of the joint.

The ratio of maximum force to maximum velocity at this point will represent the

damping coefficient. The measured damping coefficients in three orthogonal directions

can be used to build the damping matrix of the finite element of the truss.
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There are other methods for measuring damping than the one I have proposed.

These include the matrix method by Hasselman (Hasselman, 1976), the energy method

of Kana (Kana, 1975), and the damping synthesis method suggested by Soni (Soni,

1985), who combines the best features of the matrix method and the energy method.

Since the main focus of this study was on system identification and the correlation of

damping matrices, no particular effort was devoted to measurement techniques for

damping coefficients. The assumption was made that the damping coefficients could be

measured by one of these methods.

2.2 Previous Research

Although the majority of the research studies in the area of system identification

and correlation to date do not consider the influence of damping, some of these methods

were explored. These will be discussed here since they form the basis upon which this

present research was built.

One of the pioneers in the area of system identification is Baruch (Baruch 1,

1978). The method proposed by Baruch is to minimize the Euclidean distance between

the analytical and test stiffness matrices, as follows:

Minimizc:

=ll [KJ- n [grJ - fKl)[ - n II

such that:

g2 = (qT)T[KT](qT) -- [_'T] = 0

and

g3 = [KT] - [Kr] r = 0

The test stiffness matrix can be obtained using the following:

[gr] = [KI+

where:

[AK] = - [K] (q r) (q r) r [M] - [M] (q r) (q r) r [K]

+ [M](qr)(qr)r[Kl(qr)(qr)r[M]

+ [M] (qr) [22r] (qr) r[M]

(2.1)

(2.2)

Wei's approach is similar to Baruch's and in fact the set up of all of his equations

is the same as Baruch's (Wei, 1980). However, in the process of solving for a test
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stiffness matrix, Baruch makes an assumption regarding the symmetricity of the product

of the transpose of the Lagrange multipliers matrix, the mass matrix, and the

eigenvectors to facilitate the solution. Wie, on the other hand, makes no assumptions,

and by adding more algebraic equations, obtains the solution for the test stiffness matrix,

as follows:

[Kr] = [KI - [K](qr) (qr) r [M] - [M] (qr) (qr) r [K]

+ [M](qr)(qr)r[K](qr)(qr)r[Ml

+ [M] (qr) [;tZr](qr) riM]

(2.3)

Another approach similar to Baruch's was proposed by Berman (Berman 2,

1983). In Berman's approach, the mass matrix is modified, as follows:

Minimize:

gl =11tMa-x/2([Mr] - [M]) [M] -1/2 II

The test mass matrix can be obtained using the following expression:

[Mr] = [/14] + [M] (qr) [m] - 1([/] _ [m]) [m] - l(qr) T[M]

where:

[m] = (qr)r[M](qr)

(2.4)

(2.5)

After updating the mass matrix, Berman takes the same approach as Baruch to

update the stiffness matrix. However, Berman uses the mass matrix as the weight

matrix. Berman's approach is as follows:

Minimize:

gx =11[M1-1/2([Kr] - [K]) [M] -1/2 II (2.6)

such that:

g2 = (qr)rtKr](qr) - [177"] = 0

g3 = [Kr] - [KT ]r= 0

The test stiffness matrix can be obtained using the following expression:

[Kr] = [K] + ([AK] + [AK] r)

where:
(2."/)

[AK] = 1.[M](qr)((qr)r[Kl(qr) + [Z_])(qr)r[M] - [K](qr)(qr) r [214]

-7-



One of the deficiencies associated with Berman's approach is that the total mass

of the system may change. Therefore, another equation must be included in the set of

constraint equations, which forces the summation of the masses of all degrees of

freedom to be equal to the total mass. Ceasar uses the same approach as Berman, but

adds two more constraint equations to the system of constraint equations (Ceasar 1,

1983). These additional constraint equations are an equation for the total mass and an

equation for the interface loads. Caesar's approach is more complete than Berman's.

However, another deficiency with both Berman's and Caesar's methods is that the mass

matrix and the stiffness matrix are modified separately. If it is believed that both the

mass matrix and the stiffness matrix are inaccurate, then a multi-objective minimization

problem may have to be set up to modify all inaccurate matrices at one time because the

modal data are functions of the mass matrix and the stiffness matrix together.

Chen uses the th_ry of matrix perturbation to modify the analytical mass and

stiffness matrices (Cben 2, 1983). In Chen's approach, the mass and stiffness matrices

are expanded in terms of analytical values plus a modification matrix. The advantage of

this approach is the simplicity of it which enables real time operation during the modal

survey test. Chen's approach follows.

Using the equation of motion the following orthogonality conditions can be obtained:

(2.8)

(2.9)

(qr)r[M](qr) = [1"]

(qr)r[rl(qr) =

While defining the following perturbation equations as:

[M r] = [M] + [AM]

[Kr] = [_+ [AX]

(q r) = (q) + (Aq)

LOr]= _] + [Ap]

When substituting the above definitions into orthogonality conditions, and ignoring the

second order terms, the result is:

[AM] = [M] (q) (2 [/] - (q)r[M](qr)- (q)r[M](q))(q)r[M] (2.10)

[AR] = [M](q)(2[2 2] + 2[2][2 r] - (q)r[K](qr) - (q)r[K](q))(q)r[M] (2.11)

Sensitivity of eigenvalues and eigenvectors is another approach that has been

proposed by several authors to modify the spatial property matrices. Sensitivity

analysis begins by expressing the equation of motion:

-8-



(IK] - ZflM])(q) = I0] (2.12)

Let's suppose that there is a design variable, such as the cross section of a beam,

and there is no agreement as to how to analytically model this design variable. Thus, the

accuracy of this design variable is in question. As a result of this uncertainty, the modal

data appear to be different from those of the analytical model. The first step in the

sensitivity approach is to determine how sensitive the eigenvalues and eigenvectors are

to the design variables. Therefore, the partial derivatives of the eigenvalues and the

eigenvectors with respect to the design variable need to be obtained. Next, we use the

partial derivatives of the eigenvalues and the eigenvectors as though they were the

slopes of a set of linear lines which define the relationship of the test modal data with

respect to the design variable. We then use the test modal data to calculate the value of

the design variable that satisfies the linear equations. SuRer derives the equation of the

partial derivatives of the _ eigenvalues and eigenvectors, with respect to thej th design

variable V, using equations (2.8) and (2.12), as follows (Sutter, 1988):

o,_j_ (qj)rO[K]. . _(q)r_(q)o_ TeTtqJJ - . (2.13)

o(qj) o_j[_(q) 0[/o,.) 0tin([_ -_'J[_) 0v, - 0v, -re?,'_ + _-_v-;7(q) (2.14)

A problem arises since the equation representing the partial derivative of the

eigenvectors, equation (2.14), is singular. Several methods have been introduced in the

literature to obtain the solution to the singular equation. Some of these methods are:

1) The Finite Difference Method where the methodology of perturbation is used to

determine the old eigenvector using the equation of motion:

oqj _ (q._,.) - (qj_) (2.15)

2) The Modal Method where the partial

expressed as an expansion series:

O(qj) N
- _ A_k(qk)

O_
k=l

where:

q ,T,.O[K] a[M]

- for
AUk = (_.j- A.k)

derivatives of the

k#j

eigenvectors are

(2.16)

-9-



For k =j, equation (2.8) is differentiated to obtain the following expression:

O(qj) ( .ra[_ . . (2.17)

When substitutingequation (2.16)into equation (2.17),an expression for the

coefficientAO'kcan be obtained,as follows:

1 ra[M]
.4_]lg = -- _(qj) _(qj)

for k=j (2.18)

3) The Modified Modal Method where a pseudo static solution of equation (2.14) is

obtained. This solution is then used as an initial value to approximate the modal

deformation. The mode acceleration method used in transient dynamic analysis is

the basis for the modified modal method. The pseudostatic solution is obtained by

solving equation (2.14), as follows:

O(ej), ia_j o[x] .O[._F]_(.)
(-_/)s = [K]- (_Vi[/W]. - _ + A,-_/j .q (2.19)

O(qj)

When solving equation (2.14), the quantity 2j[M] _ has been neglected.

When the pseudostatic solution, equation (2.19), is added to equation (2.16), the

following is obtained:

o(q) o(qj).
-(WT'"+Z

k=l

where:

m

A_/k = coefficients of the modified modal method

(2.20)

Equation (2.14) is then substituted into equation (2.20) to obtain expressions for

_jk, as follows:

-10-



-r-a[Kl _ 0[ml_j(q,_t_ __¢""°_,)-) for k_j
A e = _t(2 j - Xt)

(2.21)

A--#.k ½ TOtM]=_ (q) -w/(q) for k=j (2.22)

4) Nelson's Method where the partial derivative of the eigenvectors is expressed in

two solutions, namely, the particular solution P, and the complementary solution C

(Nelson, 1976). Therefore, the partial derivative of the eigenvectors becomes:

a(qj)
OF/ - [P] + [C](qj) (2.23)

Nelson then identifies the component of the eigenvector with the largest

absolute value and constrains the derivative of that component to zero in order to obtain

the complementary solution, as follows:

1 T0[M]
C = -- (qj)T[M'][P] - -_(qj) "_i(qj)

(2.24)

Two of the very few authors who considered damping in their formulations for

system identification are Ibrahim (Ibrahim 7, 1979) and Carnerio (Carnerio, 1987).

Ibrahim introduced the Time Domain Modal Vibration Technique. In this

method, the space-state form of the equation of motion is set up for an

n-degree-of-freedom structure, as follows:

[M]('q) + [C](_/) + [K](q) = IF] (1.5)

Equation (1.5) can be transformed to the following forms:

=ai 1

or"

j( = AX + BF

[F] (2.25)

(2.26)

where:

-11-
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The eigenvalues of A are the roots of the characteristic equation (2.26), thus the

structural system can be completely characterized by determining these roots. The B

matrix determines the response of the system when a forcing function is applied to the

system. Therefore, in a free vibration environment, the modal and spatial properties of

the structural system can be determined only from theA matrix. Equation (2.26) can be

written as:

g = AX (2.27)

When considering a n-degree-of-freedom structural system, the A matrix is

2n-by-2n. The upper half of the A matrix, however, consists of a null matrix and an

identity matrix. Therefore, the remaining n-by-2n (2n 2) variables have to be

determined to fully identify the structural system.

The 2n z unknown elements of the A matrix can be determined by noting that at

any instant of time, t/, the relationship between the modal properties in equation (2.27)

should hold true. Therefore, equation (2.27) can be written as:

= AtX_ (2.28)

If the response data, i.e. displacements, velocities, and accelerations, are known

at 2n 2 time intervals, equation (2.28) can be solved. In order to determine the response

data, Ibrahim proposes measurement of the response data at 2n2 time intervals (lbrahim

7, 1979). As a result, the upper half of equation (2.28) can be written as:

_--1' X--'l,-"--'_(2m)] = A[X1,X-2_--*, X-(2m)] (2.29)

If all the response data from a modal survey test are measured, equation (2.29)

can be directly solved for all elements of the lower half oftheA matrix. However, to be

able to measure the response data, all modes of interest should be present when the

structural system is vibrating freely.

- 12-



In order to measure the response data so that the modes of interest are present

simultaneously, one of the three methods of excitations outlined below may be applied

to the structure:

1) An impulse load may be applied. Impulse load possesses a uniform spectral

density function over the entire frequency range, and this will provide an ideal

scenario to measure all modes. However, the impulse load should have enough

energy to excite all the modes necessary to identify the spatial properties. Impulse

loads do not possess a large amount of energy. In addition, a true impulse load is

unattainable. Therefore, for large structures or highly damped structures, impulse

loading may not be a feasible method of exciting all the modes of interest.

2) A burst-random or continuous random input load may be applied. The power

spectral density function of such input loading is continuous. This type of loading

will excite all modes and provide a scenario where all modes of interests can be

measured. However, problems may arise since achieving a true Gaussian random

noise is not possible. Thus, prediction of the future values of the response data may

not be achieved sufficiently from the measured data.

3) A sine-sweep or sinewave loading may be applied. The sine-sweep should be

applied over the frequency range of interest. The time period for this type of

loading should be kept small enough so that the possibility of highly damped modes

dying out is eliminated. This type of loading can provide a larger amount of energy

to the structural system, and may be preferred to impulse loading.

Another method for system identification was proposed by Carnerio (Camerio,

1987). Carnerio combines sensitivity analysis and component mode synthesis

formulation to identify a structural system. In this method, the linearized stiffness and

damping coefficients are estimated by minimizing the weighted sum of the squares of

the difference between experimental and theoretical modal quantities.

Carneiro sets up the extended, weighted, least-squares objective function in the

following fashion:

J(p) = (Ab)r[G_](Ab) + fl(Ap)r[Gp](Ap)

where:

J(p) = objective function to be minimized

(P) = _l, P2,'--, Pq) = truss joint parameters

(2.30)
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L
ql(b)=

qn

[Gb] and [Gp] are the weighting matrices

fl = confidence factor between experimental and analytical data

(zib) = (b)x- (b)c

(zip) = _)° - _)c

The indexes, x, c, and a, refer to the measured, corrected, and analytical quantities.

The scalar quantity in equation (2.30) is set equal to zero, which means that

there is no global relative confidence between the experimental data and the analytical

data. Therefore, equation (2.30) can be simplified as:

J(p) = (_b)r[Gb] (_b) (2.31)

Equation (2.31) is a standard, weighted, least-squares, objective function, and,

after the minimization process, a set of linear equations is obtained, as follows:

(zib) = [S](dp)

where:

O;_l/opI ...

o_=1/opl ...
[s] = :

Oqx/Opl...

Oqml/OPl ...

(2.32)

a_llap q

O_,ml/ OP q

oql/opq

Oq=l/Opq

(2.33)

The solution of equation (2.33) can be obtained through iteration; for the k th

step, the solution will be:

(zip(t)) = [$(k)]+ (zlb(t))

where:

[S(t)] + = Moore-Penrose generalized inverse obtained by singular value
decomposition of the matrix in question

(2.34)
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The parameters of equation (2.34) are corrected as:

I

¢p)(_+1) = ¢p)(k)+ (zlb)_k) (2.35)

Then, the analytical modal data are recalculated and the procedure is repeated

until:

IIAp<k)ll e IIP<k>ll (2.36)

If numerical calculations of the sensitivity matrix are desired by means of a

finite difference method, then all the derivatives of the eigenvalues and the eigenvectors

need to be determined by solving an eigenvalue problem at each nominal point. This

type of process is not only time-consuming, but it also introduces round-off and

truncation errors into the future analyses. Camiero uses Nelson's methodology to arrive

at the equations for the derivatives of the eigenvalues and the eigenvectors with respect

to the joint parameters. The derivative equations can then be used in equation (2.34),

and this process eliminates round--off and truncation errors and saves computer usage

time.

2.3 Concluding Remarks

Ibrahim's methodology is indeed innovative and powerful. One weakness of

this method however, is that if the modes of interest are sufficiently far apart, it may be

an impossible task to excite the structure so that all modes of interest appear in the

response data simultaneously. As a result, the response data required to solve equation

(2.29) may be unattainable.

The system identification methodology proposed by Carniero is also powerful.

However, two weaknesses can be identified in Carniero's methodology.

1) In an effort to identify the structural system, the analyst should have knowledge

of how the structural system behaves under loading, and what the important

parameters (such as a beam property, etc.) are, and whether these properties

influence the important modes of the structure. Based on this knowledge, the

analyst is then able to set up the sensitivity matrix. If the finite element model of the

structural system in question is composed of several different properties, then it

would be a very tedious and time--consuming task for the analyst to search out the

important parameters that influence the important modes.

2) To eliminate the need for learning the dynamics of the structural system through

trial and error (e.g. varying joint parameters to determine variations in modes and
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mode shape) Carnerio suggests another method. This method deals with

determination of the locations of the differences between the finite element model

and the experimental results through automatic lo_lization methods such as the

methodology developed by Zhang (Zhang, 1987). However, according to Caesar in

"Update and Identification of Dynamic Mathematical Models," based on

experience, the refinement of a finite element model cannot be handled in an

automatic manner, since the convergence behavior is very sensitive. In other

words, if an incomplete or irrelevant set of system values is used in finite element

model refinement, convergence to wrong values can occur.

As a result of studying the work of other researchers, the author formulated two

methods for system identification of structural systems possessing nonproportional

damping to be studied. The two methods in this study will not be test--dependent, will

not require prior knowledge of the structure under study, and will not use localization

techniques which may force the problem to converge to wrong values.
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CHAPTER HI

STRUCTURAL FORMULATION AND METHODOLOGY

3.1 Introduction

This chapter contains the derivation of the equations involved in system

identification for a structural system possessing nonproportional damping. Two

methods are presented to modify the analytical matrices. Method 1 modifies the

analytical damping matrix, and method 2 modifies the analytical damping matrix and

the analytical stiffness matrix.

3.2 Equation of Motion with Nonproportional Damping

The linear equation of motion of an n-degree--of-freedom system in matrix

form expressed in generalized coordinates ql, q2,---, qn is:

[M](q) + [C](q) + [r](q) = [r]

where:

(q) = the modal eigenvector

(q) = the modal eigenvelocity

('q) = the modal eigenacceleration

(3.1)

For a structural system with nonproportional damping each component of

eigenvector (q) is distinguished not only by amplitude but also by phase; thus, two

pieces of information are required to determine each one. It follows that 2n equations

are required to determine all components of an n-degree-of-freedom system in each

mode. Therefore, to the n equation of motion (3.1), must be added another equation

giving a system of 2n equations to be solved in the case of nonproportional damping. To

overcome this stumbling block the missing n additional equations are added in the

following fashion (Hurty, 1965):

t n<q)- = to] (3.2)

Equations (3.1) and (3.2) are combined to give the following matrix equations

of the order 2n:

[[o] [M]1
(q - t q: t01 (q) (0

+ ..... • = (3.3)
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Equation (3.3) can be written as:

[A]6,) + [B]O,) = (t3

where:

[a]= E J[o]: [MJ
|

-- -- " I"" " -- --

[M]: (CJ

[B]=

0,)=

- [MJ [0]1

(,)1

((°)/

(3.4)

Matrices [A] and [B] are both of the order of 2n, real, and symmetric.

3.3 Solution of the Homogeneous Equation

The homogeneous form of equation (3.4) is obtained by setting the equation

equal to zero.

IA]¢y)- [B] (y) = [0] (3.5)

In an effort to solve equation (3.5), the [B] matrix should be checked for

singularity. In general, the [B] matrix will have an inverse when the stiffness matrix [K]

is nonsingular. If the stiffness matrix is singular which will be the case if the system is

unconstrained with respect to one or more rigid-body displacements, then such

rigid-body modes must be removed from the system. For the test problems in this study

there will be no rigid-body modes. The solutions of linear equations such as equation

(3.5) are found when the displacements and velocities have the form ez't. _, is the

eigenvalue of equation (3.5).

The orthogonality condition of the normal modes with respect to the stiffness

and the mass matrices is the base of this method. For the [it] matrix, the following

orthogonality condition exists.
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(y)r[A] q) = [a] (3.6)

(Y) r[ B] 0') = [b] (3.7)

where:

[a] and [b] = diagonal complex matrices as a result of orthogonality conditions

note that:

(q) = p(q) and (p) = (1)

Equations (3.6), and (3.7) can be rewritten as:

(,>/ (M]-;i+ij_<,)j=["]
T ,

\_')/ -t-_lti/,il,\(')/=t_l

(3.8)

(3.9)

Equations (3.8) and (3.9) can be simplified in the following fashion:

(_/)/'[M](q) + (q) T[M](q) + (q)T[C](q) = [a]

_ (q)r[Ml6t) + (q)r[/q(q) = [b]

(3.10)

(3.11)

Another convenient way of expressing equation (3.5) is to invert the B matrix

and premultiply it by the A matrix, as follows:

- [B]-X[Al(y) = ;try)

where:

..... zi---,r ...... _i.._
[B]-'[A] L-[KI [MI,-[K] [c]J

(3.12)
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In this case the orthogonality condition can be expressed as:

(y)r(_ [B]-I[A])(y) = [a] (3.13)

And the following equation can be derived:

l(q) + [K]-l[M]('q) + [K] -l[C] (q) = 0 (3.14)

Equation (3.14) will be the active constraint for method 2.

In a practical structure, which consists of n degrees of freedom, only a few

modes and frequencies (m modes and frequencies) are measured. The reasons for this

are that higher modes require high levels of energy due to their shorter wave length, and

that exciting and measuring such modes is not practical. Equations (3.10) and (3.11)

become m-by-m matrices when the practicality of measuring eigenvalues and

eigenvectors in a modal survey test axe considered. If it was possible to measure all n

modes and frequencies of an n-degree-of-freedom structure, (q) would become an

n-by-n matrix, and it would be possible to invert both (q)r and (q) on the left side of

equations (3.10), and (3.11) and solve for [C] directly. However, since (q) is an n-by-m

matrix, where m is less than n, there exists an infinite number of inverses for (q). In an

effort to determine the minimum [C] which satisfies the requirement of equations (3.10)

and (3.11), a minimization problem is set up. The Gauss method is used to minimize the

mean square error of [C] and [CT] matrices. The subscript T symbolizes the measured

variables. However, in order to make the objective function of the minimization

problem more robust the author decided to make the mean square error the weighted

function of [Mr] or [K].

3.4 Formulation for Structural Modification

Two methods were devised in this study to modify the original finite element

model in order to improve the correlation between experimental data and analytical

results. Both methods focus on correction of the nonproportional damping. As was

discussed previously, due to the limited number of modes and frequencies measured in a

modal survey test, and the fact that the eigenvector matrix is not square, the test damping

matrix and the test stiffness matrix cannot be obtained from the orthogonality

conditions. As a result, a second set of equations is introduced that represents the

difference between the test properties and the analytical properties. This second set of

equations can be treated like the objective functions in a minimization problem. The
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orthogonality conditions, then, can be treated as the constraint of the minimization

problem. Therefore, in an effort to obtain a set of test properties, the differences

between the test properties and the analytical properties are minimized such that the

orthogonality conditions are satisfied at all times.

In method 1, the assumption is made that the analytical mass and stiffness

matrices are accurate. Therefore, only the damping matrix will have to be correlated.

Method 1 will also be used to identify structural systems with inaccuracies in both the

damping and the stiffness matrices. Method 1 will be a single-objective minimization

problem with the orthogonality condition as its one constraint.

In method 2, the assumption is made that only the analytical mass matrix is

accurate. Therefore, the stiffness and damping matrices will have to be correlated

against the test results. Method 2 is a multi--objective minimization problem with one

constraint derived from the condensed form of the equation of motion.

3.4.1 Equations and Derivation for Method 1

In method 1, it is assumed that the mass and stiffness matrices are accurate, and

that only the damping matrix has to be modified. The minimization problem to solve

equation (3.10) becomes:

Minimize:

- ill [Nl(tCr] - [C])[N]It (3.15)

such that:

g2 = (_/r)rtMl(qr) + (qr)rt q(qr) + (qr)r[Cr](qr) - [ar] = 0 (3.16)

where the [N] matrix is the weighting matrix.

Equation (3.15) is the objective function of the minimization problem, and it

represents the difference between the damping matrix from the analytical finite element

model and the one from the test results. The subscript, T, represents the test properties.

Equation (3.16) is the constraint equation for the minimization problem and it forces the

orthogonality condition as derived in equation (3.10) to be satisfied.

In a structural system the sum of all forces and moments acting on the structure,

including all inertia loads resulting from the mass and the mass moment of inertia,

should equal zero. This extension of D'Alembert's principle results in symmetric

stiffness and damping matrices. Therefore, another constraint which would have been

appropriate to add to the above minimization problem was the symmetry condition

imposed on the damping matrix, as follows:

-21 -



g3 = Car- Crr = 0 (3.17)

However, the author decided to solve equations (3.15) and (3.16) without

considering equation (3.17). If the resulting equation for Cr is not symmetric, then

equation (3.17) will be added to the minimization problem.

In an effort to solve equations (3.15) and (3.16), Lagrange multipliers were

used. The advantage of using Lagrange multipliers is that the constraint equation is

combined with the objective function to form a single equation, as follows:

G = gl + 2 Ag 2

where:

G = new matrix to be optimized.

A = n by n matrix of Lagrange multipliers.

(3.18)

In order to minimize G, the fu'st derivative of equation (3.18) with respect to the

unknown, C/., will be obtained and set equal to zero, as follows:

aG _ agl +2A ag2 -0
acr aCr aCr

(3.19)

The partial derivatives of gl and g2 with respect to C/- will be evaluated

separately and then summed up to fulfill the requirement of equation (3.19).

Using Einstein's rule of summation, equation (3.15) can be rewritten as:

gl = l n cr, - %,)npcn (cr. - c, )n,q

where:

n=[Nl

c= [C]

(3.20)
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The partial derivative of equation (3.20) with respect to cTo

agl __ nT.d_lo.(CT_ -- Crs)nsqn T

is the following:

(3.21)

The matrix form of equation (3.21) is:

Ogl - [N] at[N] ( [C r] - [C]) [N] [N]r (3.22)
OC r

As will be discussed in chapter IV, based on the work by Baruch, [N] was

selected to be [M](l/2) (Baruch 2, 1978). Thus, equation (3.22) can be rewritten as:

0g I _ [M]_I([CT] _ [C])[M.]_ I (3.23)
OC r

The next step is to determine the partial derivative of g2 with respect to

C r with:

ag2 _ O_r(2 A(qr)r[crl(qr))aC r

(3.24)

Again, using Einestien's rule of summation, equation (3.24) can be rewritten as:

092

OCr - O_r(2 Atpqrnrcr, qr,, )

or:

Og2 _

(2 A_qr_,Tqr )

(3.25)

(3.26)

The terms in equation (3.26) can be rearranged to obtain the following result:

Og2 _ 2(qr)[A]r(qr) r
#C r

(3.27)
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Equations (3.23) and (3.27) should be added and set equal to zero to fulfill the

optimization requirements set by equation (3.19), as follows:

OG _ [M1-1([C r] - [CI)[M]-1 + 2(qr)[A]r(qr)r = 0 (3.28)
aC r

There are two unknowns in equation (3.28), namely [Cr] and, [A]. r

Equation (3.28) provides one optimum point for the difference between the

damping matrices. However, the necessary and sufficient condition for a global

minimum in equation (3.28) is that the second partial derivative with respect to the test

damping matrix be positive definite. This second partial derivative is equal to the mass

matrix to the power of -2, and since the mass matrix is positive definite, the optimum

point is a global minimum. The strategy for obtaining the test damping matrix would be

first to obtain an expression for the Lagrange multipliers matrix and to use this matrix to

solve for the damping matrix.

Solving equation (3.28) for [C7] by pie- and post-multiplying each side

of the equation by [C r] and [C T] will result in the following equation:

(qr)r[Cr](qr) = (qr)rtcl(qr)

- 2(qr) r[ M] (qr) [11] r(qr) [hi] (qr) r

(3.29)

Substituting equation (3.29) into equation (3.10), and solving for [A 7"]r

will result in the following equation:

JAr]r ((qr) r[M] (qr)) -1

((qr)r[M](qr) + (qr)r[Ml(qr) + (qr)r[C](qr)- at)

(3.30)

((qr)rIM](qr)) -1

Equation (3.30) represents the transpose of the Lagrange multipliers. The

substitution of this equation back into equation (3.29) will result in an equation that is a

function of the test damping matrix, as follows:
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[crl = [C] - [M](qr)((qr)r[M](qT)) -1

(iqT)T[_(qr) + (qr) r [SO-(qr) + (qr)r[c](qr) - at)

( (qT) T [M] (q T) ) - I(qT) T[M]

(3.31)

The only unknown in equation (3.31) is [aT]. This unknown can

be obtained using the orthogonality conditions, equations (3.10) and (3.11)

Using these orthogonality conditions it can be easily shown that:

[b r] = pr[arl (3.32)

Since all the terms in equation (3.11) are given, this equation will be

used to determine [aT] Substitution of equation (3.32) into equation (3.11), and

solving for [a r] results in:

Jar] = _r ( (q r) r [K] (q r) - (q r) [M] (q r) ) (3.33)

Substitution of [a r] into equation (3.30) results in a single equation

for the test damping matrix with all the terms given from the test results and the

analytical results, as follows:

[C r] = [C] - [M](qr)((qr)r[M](qr)) -1

((qT)r[M'](qT) -F- (qr)rtM](qr) + (qT)T[C](qT) --

l((qr)r[Kl(qr ) - (qr)r[M](qr)))
PT

((qr) r[M] (qr)) -l(qr)r[M]

(3.34)

We can now conclude by studying equation (3.34) that since all the matrix

products are diagonal and symmetric, their algebraic summation will also be symmetric.

Therefore, there is no need to add equation (3.17) as a second constraint to the

optimization problem.
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3.4.2 Equations and Derivation for Method 2

In method 2 the basic assumption is that there are inherent inaccuracies in both

the stiffness matrix and the damping matrix. That is, there are two variables to be

determined, namely, the stiffness and the damping. Therefore, the minimization

problem is set up so that the values of both the stiffness coefficients and the damping

coefficients are minimized in one united objective function. The constraint for this type

of problem should have the influence of all spatial properties. Because of this fact, a

condensed form of the equation of motion as derived in equation (3.14), rather than the

orthogonality conditions as derived in equations (3.10) and (3.11), will be used for the

constraint equation. The advantage of having one constraint equation instead of two is

that there is one less Lagrange multipliers matrix to be calculated. The minimization

problem is the following:

Minimize:

g, = ½11[.,v](tcT]- II+ ½11 - II

such that:

g2 = (qr)r[Ml(_/r) + (qr)r[Kr](l_('qr) + (qr)r[Crl(qr) = 0

(3.35)

(3.36)

where the IN] and [T] matrices are the weighting matrices.

In an effort to solve the aforementioned minimization problems Lagrange

multipliers will be used to combine the constrained equation with the objective function.

This procedure is similar to the procedure used in method 1. An equation similar to

equation (3.18) results from combining equations (3.35) and (3.36), as follows:

G = gl + 2 zig 2 (3.18)

In order to minimize G, the first partial derivative of equation (3.18) with

respect to the unknowns KT, and C/- will be obtained and set equal to zero, as follows:
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aa _ agl + 2 A °gz =o
OKr OKr -._ aK r

aG _ agl + 2 A ag2 - O
OCr OCr aCr

(3.36)

(3.37)

Similar to derivation of the partial derivative ofglwith respect to CT in equa-

tion (3.23), the derivation of the partial derivative ofgl with respect to KT and CT results

in:

agl - [M]-I([Kr] - [K])[M] -1 (3.38)
aKr

and

_ [Mq_2([Cr] _ [CI)[MI_2
OCr

(3.39)

The weighting matrix for the partial derivative of gl with respect to CT was

chosen to be [214]-2 which is different from the weighting matrix used in method 1 (as

will be explained in chapter IV). The weighting matrix for the partial derivative ofgl

with respect to KT was unchanged.

Derivation of the partial derivative of g2 with respect to KT and CT (which is

similar to the derivation of the partial derivative of g2 with respect to CT in equation

(3.27)), results in:

ag2 _ 2(lqr)[A]r(qr)r
0Kr

(3.40)

ag2 _ 2(qr)[A]r(qr) r
0C r

(3.41)

Substitution of equations (3.38) and (3.40) into equation (3.36) results in:

OG _ [M]-l([K r] - [K])[M]-1 + 2(_rqr)[A]r(qr)r = 0 (3.42)
OK T

Substitution of equations (3.39) and (3.41) into equation (3.37) results in:

OG _ [M]-2([C r] - [C])[M]-2 + 2(qr)[A]r(qr)r = 0 (3.43)
aCr
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Equations (3.42) and (3.43) provide one optimum point for the differences

between the damping matrices and stiffness matrices. However, the necessary and

sufficient condition for a global minimum in these equations is that the second partial

derivative with respect to the test damping and test stiffness matrices be positive

definite. The second partial derivatives are equal to the mass matrix to the power of-2

and -4, and since the mass matrix is positive definite, the optimum point is a global

minimum. Equations (3.42) and (3.43) comprise a system of two equations which is

solved simultaneously to obtain expressions for KT, and CT. However, the test stiffness

matrix and the test damping matrix are not the only unknowns in the equations. The

Lagrange multipliers matrix is also an unknown matrix which will have to be either

eliminated or determined.

Solving equation (3.42) for KT will result in the following:

[K r] = [Kl - 2[M] (_qr) [1'1]T(qT)T[M] (3.44)

Equation (3.14) is used one more time here to eliminate the test stiffness matrix

in equation (3.44), and to obtain a solution for the Lagrange multipliers in terms of the

test damping matrix.

[AT] T =_ ( (q T) T [ M] _",p_:q T) ) -1

((qT)rEK](p_qT) + (qr)rtM]('qT) + (qr)rtcr](qr))

( (qr) T[ M] (_:qT)) - 1

(3.45)

The next step is to solve equation (3.43) for CT.

[CT] = [C] - 2[M]2(qr) [A]T(qT) T[M] 2 (3.46)

Substituting equation (3.45) into equation (3.46) results in an equation with

only one unknown, CT:
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[CT] = [C] - [M]2(qT)((qr)T[M](p!qT)) -l

((qT)T[K](Aq T) + (qr)r[M](_/T) + (q_)T[CT](qT))

( (qT) T[l_r] (p_qT) ) - l(qT) T[_l] 2

(3.47)

The test damping matrix appears on both sides of equation (3.47). Therefore,

the solution of this equation, which will be explained in chapter IV, is not a

straightforward process. However, this equation contains only one unknown, CT.

The result of substituting equation (3.45) into equation (3.44) is:

[KT] = [It']- [M] (p-_q:r)( (qT)T[M] (p_TqT) ) - I (3.48)

((qr)r[Kl(lqr) + (qr)r[M](qr) + (qr)r[Cr](qr))

((qr) riM] (p-_qT)) - l(qT) TIM]

The process for obtaining the test stiff ess matrix and the test damping matrix is

to first obtain a solution for CT from equation (3.47), and then to substitute this matrix

into equation (3.48) to obtain a solution for KT.

3.5 Concluding Remarks

The advantages associated with the two methods suggested in this study are:

1) Important modes that will be used for system identification can be measured in

various types of modal survey tests, and not all modes have to appear in a single test

run, which the Ibrahim methodology requires (Ibrahim 7, 1979).

2) Prior knowledge of the structural system, which the Carnerio methodology

requires (Carnerio, 1987), will not be needed to identify the structural system.

3) Localization techniques will not be needed in order to identify the structural

system, which the Carnerio methodology also requires.

4) The mass matrix, which is usually the most accurate matrix of the three spatial

property matrices, does not have to be modified as is done in Berman's method

(Berman 2, 1983).
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CHAPTER IV

RESULTS AND DISCUSSIONS

4.1 Introduction

In this chapter an overview of the methods employed to solve the equations

derived in chapter III via a FORTRAN program is given. Also, two classes of structures

will be modeled and the results will be fully discussed.

The structures to be studied in this chapter are a 3-bay plane truss and a 3-bay

space truss. Both trusses are supported at one end, which means that they are

cantilevered. As such they do not possess rigid body motion. The remaining degrees of

freedom (DOF) of the plane truss can only translate in two translational orthogonal

directions in the plane of the truss. The remaining DOF of the space truss can only

translate in three orthogonal directions, and the rotational DOF are constrained.

Since in this study no actual structure with measured modal data is used, the

FORTRAN program has been designed to perform system identification and to provide

simulated modal data. Therefore, we will use the modal data from the simulation

portion of the FORTRAN program rather than sets of modal data from an actual modal

survey test.

Although the formulations of method 1 of this study modify only the damping

matrix, this method will also be applied to the structures whose stiffness matrix contains

inherent inaccuracies. In fact, the same structures will be used for both methods. The

same structures will be used in order to examine method 1 for structures with

inaccuracies in both the damping matrix and the stiffness matrix, and to be able to

compare the results of method 1 with those of method 2. It would be an impossible task

to compare the effectiveness of methods 1 and 2 without comparing their respective

numerical results.

In order to examine the effectiveness of each method and each computer run,

two basic sets of data will be provided and tabulated, namely the eigenvalues and the

eigenvelocities. The reason for providing the eigenvelocities as opposed to

eigenvectors is that eigenvelocities provide information on both the eigenvalues and the

eigenvectors at the same time because the eigenvelocities are the product of the

eigenvalues and the eigenvectors. Therefore, the method selected for this study and the

FORTRAN program to measure the closeness between the eigenvelocities of the test

model and those of the analytical model is the most stringent criterion possible.

The numerical results of the system identification and correlation for the 3-bay

plane and space trusses will be presented through figures and tables. A discussion of the
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results, mainly the eigenvalues and eigenvelocities resulting from the modified

properties, will be presented for each truss.

4.2 Description of the FORTRAN Program

A 5,400-line FORTRAN program was written for this study to provide the

simulated test modal data, and to perform system identification and correlation. The

subroutines for complex eigenvalue and eigenvector extractions were obtained from

LAPACK and linked to the main FORTRAN program. LAPACK is a national library of

mathematical subroutines. The first portion of this program contains PARAMETER

cards, and flags cards that control the functions of the program. The second portion of

the program reads and writes the modal data and spatial data. The A and B matrices are

formed by the third portion of the program. The fourth portion of the program contains

the subroutine calls for eigenvalue and eigenvector extraction. The solutions to the

equations for various methods explored in chapter III are contained in the remainder of

the program.

The FORTRAN program contains two options for reading the analytical spatial

properties of a structural system. It can read the elements of the mass matrix, the

stiffness matrix, and the damping matrix row by row. Alternatively, it can read the data

from an OUTPUT4 file format generated by an MSC/NASTRAN finite element

program. The OUTPUT4 file is generated by including the DATA MATRIX

ABSTRACTION (DMAP) in a MSC/NASTRAN input file. Both options for reading

data can be activated via flag IREAD.

As previously mentioned, a simulation program was included as part of this

FORTRAN program, in which the test modal properties are generated and saved for the

system identification portion of the program. The simulation portion is activated

through the IINPUT flag. If the simulation portion of the program is not activated, then

the modal properties of the test model will be read for system identification and

correlation activities.

Three options for eigenvalue and eigenvector extraction are available in this

FORTRAN program. For the structural models that do not possess rigid-body motion,

the CG subroutine is used. Prior to using the CG subroutine, the B matrix is inverted and

premultiplied by the A matrix. This matrix product is then used together with the CG

subroutine to solve for the complex eigenvalues and eigenvectors. However, if the

structure contains rigid-body motion, then the B matrix is not invertable, since the

stiffness matrix is singular. Two subroutines have been provided for such occasions.

The LZHES and LZIT subroutines by Kaufman closely resemble the QZ method, in

which the A matrix is reduced to an upper Hessenberg form, and the B matrix is reduced

to an upper triangular form (Kaufman 1, 1974). The advantage of using LZI-IES and
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LZIT is that elementary transformations are used to reduce theA matrix and the B matrix

as opposed to orthogonal Iransformation. This choice of transformations is more

efficient when either the A matrix or the B matrix is complex. However, for large

problems, the LZHES and LZIT subroutines are not stable. For structures possessing

rigid body motion, a second set of subroutines is provided, CQZHE , CQZVAL, and

CQZVEC. These subroutines are based on the QZ method where the A matrix and the B

are reduced to an upper Hessenherg matrix and the upper triangular matrix using

orthogonal transformations. It is best to use these three subroutines for larger structures.

For the classes of structures in this study, the CG subroutine was used since the

transformations in the other subroutines were too time-consuming, and the

eigenvectors were not as accurate.

The next step in the FORTRAN program is to store the modal properties on tape

if the simulation portion of the program is activated, or to continue with correlation

activity. When comparing the measured modal properties, specifically the eigenvectors

and eigenvelocities from a medal survey test with those from a finite element model,

there should be common ground for this comparison. In this FORTRAN program the

maximum value of the real part of the eigenvelocities is the common ground.

Prior to system identification activity, the eigenvelocities and eigenvectors

were normalized based on the total kinetic energy of the structural system. The idea of

this normalization is that as each complex mode is excited, the kinetic energy of the

system will vary. The amount of kinetic energy of the lower modes is usually higher,

since a larger portion of the structure, or more mass, is in motion. The normalization

process was carried out by determining the kinetic energy associated with each mode

while using the following equation:

r. =
where:

Tn = kinetic energy associated with mode n

(4.1)

The kinetic energy values of each mode are then summed up and the net value

represents the total kinetic energy of the structural system. The total kinetic energy of

the system is then set equal to 100 percent, and the individual contribution (kinetic

energy) of each mode is obtained based on the total energy. This process is performed by

dividing the kinetic energy of each mode by the total kinetic energy times 100 percent.

The kinetic energy values associated with a structure are output so that the analysts can

visually examine these values and determine which modes are important for correlation

activity. Obviously, modes possessing lower kinetic energy values may not be as

important as the modes possessing higher kinetic energy values. The reason for this is
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that modes that possess lower kinetic energy values have short wavelengths and are

more difficult to produce in a modal survey test. In addition, the modes possessing low

kinetic energy are not usually load-producing modes at supporting points of the

structure. It should be emphasized here that the benefit of having weU-correlated

stiffness and damping matrices is so that they can be used later to generate forces and

moments and compare these values with the design loads. Therefore, the modes that do

not contribute or have a very small contribution based on their kinetic energy values can

be ignored.

Table I and figure 1 represent the kinetic energy values associated with modes

one through five of the 12-BAR truss. As can be observed, the kinetic energy values for

a structural system with nonproportional damping are complex. Therefore, both real

and imaginary parts of the kinetic energy values have been shown. In figure 1, the

kinetic energy associated with modes two through four are the highest, and for higher

modes, this value diminishes. Also it should be noted that modes two through four

posses approximately the same amount of kinetic energy. The reason for this, which will

be explored in the modal deformation plots later in this paper, is that the shapes of these

modes and the respective eigenvectors are close. We can conclude that it is important to

include one of the modes between one and four in the set of modes for correlation

activity.

Next, several solutions were included in the FORTRAN program for the

purposes of modifying one or two spatial property matrices of the structural system, and

to determine the new or correlated eigensystem. They are the Direct Correction, the

Stiffness Correction, the Damping Correction, and the Damping-Stiffness Correction.

The Direct Correction method is used when the number of modes is the same as the

number of DOE In the Direct Correction method, equation (3.10) is employed to

determine the test matrix, CT. It should be noted that in order for the Direct Correction

method to work, the eigenvector matrix should be square or it cannot be inverted to

proceed with the solution.

The method of Stiffness Correction was _ored based on Sidhu's methodology

(Sidhu, 1984), as follows:

= _
where:

[E] = Error matrix, error between analytical and test stiffness matrix

[K*rl = Pseudo test stiffness matrix

(4.2)
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Thepseudo test stiffness matrix is obtained by solving equation (3.11) as if the

system of equations is underdetermined, as follows:

[K'] = (qr)([b r] + (_/r)r[Ml(_/r))(qr) r (4.3)

The success of the Stiffness Correction method was extremely limited for

structural systems with nonproportional damping matrices, and at times the results

obtained appeared absurd. The reason for this is that the pseudo test stiffness matrix, as

expressed in equation (4.3), is one of the infinite solutions, and this particular solution

may be mathematically correct, but not physically correct. Therefore, no results using

Sidhu's methodology have been included here. The theory behind including Sidhu's

method was to first locate errors in the damping and/or stiffness matrices so that they

could be corrected.

The Damping Correction method was tailored by using method 1 discussed in

chapter HI and equation (3.34). Three attempts are made in this correction method to

obtain the test spatial properties. In the first attempt, the test damping matrix that uses

equation (3.34) is calculated and used to obtain the modal properties. In the second

attempt, the imaginary portion of the test damping matrix using equation (3.34) is set

equal to zero, and the modal properties are recalculated. In the third attempt, the

weighting matrix is changed to a stiffness matrix, and the problem is repeated.

The Stiffness-Damping Correction uses method 2, discussed in chapter III, and

equations (3.47) and (3.48). As can be observed in equation (3.47), the unknown, CT,

appears on both sides of the equation. Several options for solving the test damping

matrix and the test stiffness matrix were followed:

Option 1: The damping matrix is determined with equation (3.47) through an

iterative process. Since the test damping matrix is unknown, the analytical

damping matrix is assumed for the initial value. This first assumed value is then

substituted into the fight side of equation (3.47), and a test damping matrix is

calculated. The new test damping matrix is substituted into the fight side of

equation (3.47), and a second test damping matrix is calculated. This process is

repeated until some arbitrary convergence criterion is met. When the convergence

criterion, based upon the test damping matrix, is met, then equation (3.48) is

employed to determine the test stiffness matrix. The test modal properties are

calculated by using the test damping matrix and the test stiffness matrix. The

success of this option depends upon how close the test damping matrix and

analytical damping matrices are. Several attempts were made to use differ6nt

weighting matrices in equation (3.47), but these attempts did not change the success
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of this iterative process, which depends upon the closeness of the test dumping

matrix and the analytical damping matrix. For large problems, the iterative process

as described here totally failed. For small structural systems with small differences

between the test and analytical damping matrices, such as a four DOF structural

system, this iterative process succeeded.

Option 2: The damping matrix is determined by using equation (3.47) through a

random search. This random search consists of assuming values for the elements of

the analytical dumping matrix, and solving equation (3.48) with these values. It

should be noted that the assumed values for the test damping matrix were within

+/-10 percent of the analytical matrix. The success of the random search depends

upon the assumed values, and at times even for a small structural system, such as a

four DOF structure, the process does not converge.

Option 3: The damping matrix is determined by using equation (3.47) through a

systematic search. The systematic search consists of setting the test matrix equal to

the analytical matrix and solving for the test stiffness matrix using equation (3.48)

which also solves the eigensystem. If the new eigenvalues and the orthogonality

matrices as expressed in equations (3.10) and (3.11) are within some arbitrary

tolerance of the measured eigenvalues and the measured orthogonality matrices,

then a solution is obtained. If not, the elements of the damping matrix are increased

or decreased in a systematic fashion (through DO loops) and the above process is

repeated until a solution is obtained. The increments or decrements are usually a

small percentage of each element of the damping matrix, approximately 10 percent.

The systematic search is extremely successful, and in most cases after two to five

iterations, an acceptable solution is obtained.

Of the three options listed above, option three was chosen for this study due to

its repeated success. However, in the process of working with different structures there

were some isolated cases where no convergence was attained. Because the solution to

option 3 is through an iterative process, at times there are no solutions.

Since the success of the solution to method 2 of this study is through an iterative

process, convergence criteria had to be devised. The convergence criteria are

determined in two steps. Step 1 compares the calculated eigenvalues with those of the

test eigenvalues. If the eigenvalues are within +/-0.1 Hz, then the FORTRAN program

proceeds with step 2. If not, the FORTRAN program varies the coefficients of the

dumping matrix and solves for another set of eigenvalues until the +/-0.1 Hz tolerance

criterion is met. Step 2 compares the calculated kinetic energy values with those of the

analytical model. The basis of comparison is less than a 1 percent difference between

the respective kinetic energy values. If the criterion in step 2 is met, then the program

outputs the solution. The reason for using the kinetic energy values rather than the
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eigenvelocities is that the size of the kinetic energy matrix (m-by-m) is smaller than the

size of the eigenvelocity matrix. Also, the kinetic energy matrix is a diagonal matrix

which contains m terms, but the eigenvelocity matrix has a larger set of terms, m-by-n

terms to be exact.

Other aspects of the FORTRAN program, for example the subroutines for

matrix operations, matrix inversion, output, and eigensystem solutions, will not be

discussed here. They are standard subroutines which are used in most program codes.
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4.3 Description of the Structures Under Study

For the purpose of system identification, two classes of structures were

considered and modeled in this study, a plane three-bay truss which is referred to as the

12-BAR truss, and a three-bay space truss which is referred to as the 44-BAR truss.

The reason for modeling two trusses was to show the success of the methodology and

formulations presented in chapter III for a variety of trusses. The intent here was to show

success for a class of structures, such as the 12-BAR truss, where the bending vibration

modes are dominant over the axial vibration modes, with no torsional vibration modes

present. Also, the author wanted to examine the methodology on a class of structures,

such as the 44-BAR truss, where all vibration modes exist at the same time, and they

may couple during excitation. The bending and torsional vibration modes of the

44-BAR truss can couple depending upon the combination of elastic and geometric

properties of the truss. The lengths of the members of both trusses were varied between

10 and 100 inches. The success of the results was invariant of the range of dimensions

used.

Nearly the entire methodology (methods 1 and 2) in this study was developed

on a simple four-degree-of-freedom system first. The reason for the development of

the methodology on a four--degree--of-freedom system is that its spatial property

matrices are small enough to check the operations performed on them with another

mathematical software. The software chosen for checking the FORTRAN program is

MATHCAD, which is a commercially available software.

The following terms, used in the tables and figures of chapter IV, are defined as

follows:

Analysis matrices or analytical matrices: the matrices from the mathematical

model or the finite element model which have been generated based on the

dimensions specified in the drawings of a structure.

Test modal properties: the measured modal properties from a modal survey test.

Correlated modal properties: the modal properties obtained by using the test

matrices. The test matrices are obtained by a system identification process which is

outlined in method 1 and method 2 of this study.

4.4 Weighting Matrices

One of the most difficult tasks in this study was to determine the weighting

matrices described in equations (3.15) and (3.35). This effort involved experimenting

with various spatial property matrices, their matrix products, or their ratios in the
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equations of method 1 and method 2, and observing the results. The intent was to make

the differences, as described in equations (3.34), (3.47), and (3.48), in the damping

matrix and/or the stiffness matrix as small as possible. The difficulty associated with

determining the weighting matrices is the fact that the elements of some of the matrix

products are large, and at the same time the elements of other matrix products in the same

equation are too small for further matrix operations such as addition or subtraction.

When exercising method 1, by using various weighting matrices, the author's

observation of the behavior (success or failure) of equation (3.34) led him to the

following conclusion: as long as the elements of the difference matrix product (that are

being subtracted from the analytical damping matrix) are approximately 10 to 100 times

smaller than the elements of the analytical damping matrix, the system identification is

successful. The weighting matrix, N, used in equation (3.15) and in the FORTRAN

program, is the mass matrix to the power of-1/2, and the result is quite successful.

Depending on the magnitude of the elements of the stiffness matrix when they are

compared to the elements of the mass matrix to the power of -1/2, the stiffness matrix

may also be used as the weighting matrix. For the two classes of structures in this study,

the stiffness matrix was not successful. However, as part of the FORTRAN program for

method 1, the inverse of the stiffness matrix (to be used as the weighting matrix for

equation (3.34)) was left for future use. The motivation for leaving the inverse of the

stiffness matrix in equation (3.34) and the FORTRAN program was that there may be

some future structures that can successfully work with this inverse. The system

identification methodology proposed and tried by some authors such as Berman or

Baruch also use the mass matrix to the power of-l/2 as the weighting matrix. However,

their methodology is for structures possessing only normal modes (zero damping).

In an effort to determine the weighting matrix for method 2, the same procedure

as described above was used. The trial and error used for method 2, however, led the

author to choose the inverse of the mass matrix as the weighing matrix for N and the

mass matrix to the power of-l/2 for T in equation (3.35). With the combination of the

weighting matrices as described here, when an iterative procedure (refer to section 4.2)

is used to obtain the test damping matrix in equation (3.47), the process is successful.

4.5 Four-Degree-of-Freedom System

The four--degree--of-freedom system is shown in figure 2.
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Figure 2: Four-Degree-Of-Freedom System

We can see in figure 2 that the system is supported at one end. Thus the system

does not possess rigid body motion. The following spatial properties were assumed for

the analytical model, and these properties were input and read by the FORTRAN

program :

[100i]io1001,   1000]2-1 0 1-10 15 -5 0
070 [C] = -1 2-1 [K] = l_) l[M] = 006 0 -5 10-5

00 0 -1 1 0 0 -5 5

Units :

M_lb -sec 2 c_lb-sec K=.__.
in in m

Since the purpose of the four-degree-of-freedom system was to

mathematically check the methodology and the computer programming, only one of the

spatial property matrices was varied. The varied spatial property matrix was the

damping matrix. However, the author decided to vary all of the damping coefficients in

order to exercise all of the vector columns in the formation of equations (3.34), (3.47)

and (3.48). In this way, if any errors occurred in the program, they would show up in the

results of the eigenvalues and eigenvectors. Also, in an effort to determine the

robustness of the methodology and the formulations of chapter HI, the author decided to

vary the damping coefficients by 10 percent of the analytical values. In engineering

applications, as a rule of thumb, variations of 10 percent and above are considered to he

extreme. Thus, the measured damping coefficients should not he over the analytical

values by 10 percent. The resulting test damping matrix for the simulation computer run

is the following:
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1.8 -0.9 0 0 1

-0.9 1.8 -0.9 0

[Cr] = 0 -0.9 1.8 0

0 0 -0.9 0.9

Umts:

C - lb - sec
in

4.5.1 Results for Four-Degree--of-Freedom System

After the simulation computer runs were completed, the test medal data were

saved on tape for system identification purposes. Next, the system identification was

begun by exercising method 1 and method 2, presented in chapter m. For the purpose of

system identification in method 1, one mode (mode 1), two modes (modes 1 and 2) and

three modes (modes 1, 2, and 3) were selected and used. The discussion of some of the

results follows:

1) Symmetry of Test Matrices: To determine if the resulting correlated spatial

properties are symmetric, the test stiffness and test damping matrices were printed

out for one-mode and two-mode system identification. These coefficients are

tabulated in table H, and we can see that the matrices are symmetric. Therefore, as

was discussed in section 3.4.1, there is no need to add another constraint as

expressed in equation (3.17) in order to force the test spatial matrices to be

symmetric.

2) Method 1, One-Mode System Identification: The results of this computer run

are tabulated in table III. Table III shows that the improvement of the first

frequency is nearly 100 percent. Also, the eigenvelocities in table IV show the same

improvement, that is, nearly 100 percent recovery from the analytical results. It

should be noted that sometimes during a system identification, the modes and their

respective conjugates switch places. Because of this potential switching, the

imaginary portion of the correlated eigenvelocities have different signs from the

ones of the test eigenvelocities. Overall, the results of one-mode system

identification appear to be quite satisfactory.

3) Method I, Two-Mode System Identification: The results oft.his computer run

are tabulated in tables V and VI. Table V presents the improvement of the first

frequency as nearly I00 percent, and the improvement of the second frequency as

100 percent. In addition, the eigenvelocities in table VI show the same

improvement, that is, nearly 1O0 percent recovery from the analytical results for the
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first mode and 100 percent recovery for the second mode Overall, the results of the

two-mode system identification appear to be quite satisfactory.

4) Method 1, Three-Mode System Identification: The results of this computer

run are tabulated in tables VH and VIII. In table VII we can see that the

improvement of the first frequency is nearly 100 percent, and the improvement of

the second and third eigenvalues have diverged to incorrect values. In table VIII we

can see the same improvement and divergence in the eigenvelocities, that is, nearly

100 percent recovery from the analytical results for the first mode and incorrect

values for the second and the third modes. Overall, the results of the three--mode

system identification are unsatisfactory. There are several reasons for the

divergence of the second and the third modes, the second and third modes are local

modes, while the first mode is a system mode. This means that because of the large

differences between the analytical damping matrix and the test matrix the local

modes are too far offto correlate them. Another reason for the divergence is that in a

practical structure usually only a small percentage of the spatial properties of the

test hardware are different from those of the analytical model. In the

four--degree--of-freedom system 100 percent of the damping coefficients were

varied, but in reality only a small percentage of the damping coefficients should be

different.

5) Method 2, Two--Mode and Three--Mode System Identification: The results of

these computer runs were not tabulated because no improvements occurred in the

analytical eigenvalues and eigenvectors. The cause of the convergence to incorrect

eigenvalues and eigenvectors is the large changes made in the damping matrix.

Also, as noted in section 4.1, a solution which depends on an iterative process does

not always converge to correct values.

It should be noted again that the only reason for creating the

four-degree-of-freedom system was to verify the matrix operations and the

FORTRAN program. The weighting matrices that were tried and accepted in methods 1

and 2 of this study apply to trusses in general, and they may or may not be applicable to

other structural systems in addition to the four-degree-of-freedom system.
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4.6 12-BAR Truss

The finite clement model of the 12-BAR truss is shown in figures 3 and 4. The

MSC/NASTRAN finite element program was used to model the 12-BAR truss. As can

be observed in figure 3, the 12-BAR plane truss consists of three bays. Each bay of the

truss consists of two longerons, one batten, and one diagonal. The numbers in figure 3

represent the finite element node numbers. Nodes 1, 5, 9, 10, 11, 12, 13, 14, 15, and 16

have been grounded. The remaining nodes can translate in two orthogonal directions in

the plane of the figure. We can see in figure 4 that there are 12 ROD elements, which

have been designated by the abbreviation, RD. ROD elements in MSCdNASTRAN are

general purpose elements with tension and compression capability. Therefore, the

stiffness matrix of a ROD element is the same as the stiffness matrix of a simple spring.

The mass of a ROD element is divided by two and the masses are placed on the two

respective nodes surrounding the ROD element. Also, in figure 4 the viscous dampers

(VISC) have been designated by the abbreviation, VS. The purpose of these elements is

to resist the dynamic motion of the connecting joint in each translational direction.

Thus, they represent the viscous damping in the joints of the truss. The VISC elements

in the MSC/NASTRAN finite element program are general purpose elements and they

represent the general viscous dampers. In other words, the force produced by an clement

is equal to the velocity of the connecting degree--of-freedom times a damping

coefficient. Since the lateral vibration motion of the 12-BAR truss is dominant, only

one viscous element has been attached to every joint of the truss, except to the joints at

the free end of the truss, where two viscous dampers per joint have been attached. There

are two viscous dampers per joint at the free end of the truss to resist the dynamic motion

in two directions (lateral and axial) simultaneously, ifa small coupling between the axial

vibration modes and the lateral vibration modes exists.

The ROD elements are made of steel. ROD elements of the analytical 12-BAR

truss finite element model have the following properties:

Modulus of elasticity = E = 30.0E61- _

Poisson's ratio = v =. 33

Outer diameter of truss members = O.D. = 1.0 in

Thickness of truss members = t = 0. 075 in

- sec 2
Mass density of truss members = Q = 0. 02831b in

The VISC elements of the analytical 12-BAR truss finite element model have

the following property:
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A _ -- secDamping coefficient = C = 1. I!_
in

It should be noted that the selected value of the damping coefficient is quite

large, and based on this selection, the real and imaginary parts of the eigenvalues and

eigenvectors have the same order of magnitude. This selection determines whether the

methodology and the FORTRAN program in this study can support and handle

structures with large damping.

In an effort to visualize the vibration motion of the analytical f'mite element

model of the 12-BAR truss, the complex eigenvalue--eigenvector extraction of

MSC/NASTRAN was activated, and the modal deformation plots have been included

here. The modal deformation plots for the first four modes of the 12-BAR truss when it

contains the analytical spatial properties are found in figures 5 through 12. Figures 5

through 8 present the real portion of the modal deformations, and figures 9 through 12

represent the imaginary portion of the modal deformations. In order to better visualize

and understand the motion of the 12-BAR truss, the modal deformations have been

superimposed on the undeformed shape of the truss. We can see in figures 5 through 8

that the modal deformation plots represent the system level modes, where the entire

structure is in motion. It should be noted that the kinetic energy values associated with

modes 2 though 4 are close, since the shape of their deformation and their respective

normalized eigenvectors are close.

The following steps were taken to construct a test model:

1) The coefficients of the VISC elements 17, 18, 19, and 20 were varied. When

varying the damping coefficients of these elements, 50 percent of the elements of

the damping matrix in the test model have different values than those in the

analytical model.

2) The modulus of elasticity of the diagonal elements, namely ROD elements 7, 9,

and 11 were varied. When varying the modulus of elasticity, the stiffness of the

ROD elements would vary proportionally. In general, when varying the stiffness

values of diagonal elements of a truss the bending stiffness is greatly influenced

since a large portion of the bending stiffness is due to the action (tension and

compression) in the diagonal elements.

Variance of the properties of the diagonal ROD elements was not done

randomly. Because of the connectivity of the diagonals to the joints, and the fact that

they connect to the joint at an angle, the effective stiffness of the joint combined with that

of the diagonal may be different from the effective stiffness of the joint combined with

that of the longerons or of the battens. Selection of the VISC elements was done
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randomly by the author who assumed that the manufacturing process for the joints might

have been different enough to create different damping coefficients for the truss joints.

However, in a practical structural system, the difference between the analytical spatial

properties and the test spatial properties cannot be as severe as 10 percent of 50 percent

of the joints. The 5 percent or 10 percent reduction of the analytical spatial properties

was used here only to examine the robustness of the methodology of this study.

In an effort to examine the accuracy and robustness of the methodology of the

system identification and the FORTRAN program used for this study, the values, as

described above, were varied twice. The fu'st variation of the values was a 5 percent

reduction of the analytical model's properties. All the simulation computer runs for this

5 percent reduction were called 95 models. The second variation of the values was a 10

percent reduction of the analytical model's properties. All of the simulation computer

runs for this 10 percent reduction were called 90 models.

In an effort to visualize the vibration motion of the test finite element model of

the 12-BAR truss, the complex eigenvalue--eigenvector extraction of MSC/NASTRAN

was again activated The modal deformation plots have been included here for the modal

deformation of the first four modes of the 12-BAR truss, 95 model, in figures 13 through

20. The modal deformation plots of the 90 model have not been included because the

deformation shapes are the same as the ones of the 95 model. When comparing the

modal deformation plots of the 90 model with those of the analytical model, the modal

deformation of the first, second and fourth eigenvalues have the same shape. The modal

deformation plots of the third eigenvalue appear to be different. However, when the

third modal deformation shapes of the two finite element models are examined visually,

we can see that the modal deformations are the same. They are, in fact, mirror images of

each other, and the only difference is the way they have been plotted by the

MSC/NASTRAN. As can be observed from the modal deformation plots in figures 13

through 20, the modes are system level modes, where the entire structure is in motion.

After the simulation computer runs were completed, the test modal data were

saved on tape for the system identification process. Then the system identification was

begun by exercising method 1 and method 2 presented in chapter 11I. The results of

two-mode to five-mode system identification for the 95 model have been presented and

discussed. However, the results of only the two-mode and five-mode system

identifications for the 90 model have been presented here due to the similarity in results

of the two models. The system identification for the two-mode computer runs use

modes 1 and 2. The system identification for the five-mode computer runs use modes 1,

3, 5, 7, and 9. The motivation for using a wide variety of modes in identifying the 95 and

90 models was to examine the degradation in the quality of the test eigenvalues and

eigenvectors, if any.
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4.6.1 Results for 12-BAR Truss, 95 Model, Method 1

1) Method 1, Two-Mode System Identification: The results of this computer run

are documented in figures 21 through 25 and in tables IX and X. We can see in table

IX that the improvements of the first and second eigenvalues are nearly 100 percent

Also, the eigenvelocities in table X show the same improvements, that is, nearly

100 percent improvement over the analytical results for the first and the second

modes. The values of the orthogonality condition matrix, equation (3.11), are

plotted in figures 21 and 22. The values in figure 21 are based on the analytical

eigensystem vectors and the analytical spatial property matrices. The values in

figure 22 are based on the test eigensystem vectors and the analytical spatial

property matrices. The off--diagonal terms in figures 21 and 22 are nearly zero,

since method 1 only improves upon the damping matrix. The values of the

orthogonality condition matrix (equation (3.10)), are plotted in figures 23 through

25. The values in figure 23 are based on the test modal properties and the analytical

spatial property matrices. The values in figure 24 are based on the test modal

properties and the test spatial property matrices. Figure 25 values are based on the

correlated modal properties and the test spatial property matrices. As can be

observed in figures 23 through 25, the off--diagonal terms are not quite zero.

Non-zero off-diagonal terms were expected in figure 23 because, theoretically

speaking, the test modal properties belong to a structmal system that is different

from the analytical finite element model. Although it is hard to visualize, the

off--diagonal terms have improved in figure 25 and they have gotten closer to zero.

In addition to the improvement in the values of the eigenvalues and eigenvectors,

one of the measures used to determine the success of the system identification

process is to examine the orthogonality condition before and after the system

identification. If the off--diagonal terms of the orthogonality condition have

approached zero, the system identification is successful. In fact, examining the

orthogonality matrices in large structures is the only measure of checking the

success of the system identification process for the eigenvelocities, since the large

number of DOF's of the system makes it impractical to check the eigenvelocities.

When the eigenvelocities in table X are visually examined the values of the

orthogonality condition matrices in figures 24 and 25 are approximately the same,

since the correlated eigenvelocities have approached the test eigenvelocities.

Overall, the results of the two-mode system identification appear quite satisfactory.
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2) Method 1, Three--Mode System Identification: The results of this computer

run are documented in tables XI and XII. Table XI indicates that the improvements

of the first, second, and third eigenvalues are 100 percent Also, the eigenvelocities

in table XII show the same improvements, that is, nearly 100 percent improvement

over the analytical results for the first, second, and third modes. Overall, the results

of the three-mode system identification appear quite satisfactory.

3) Method 1, Four-Mode System Identification: The results of the this computer

run are documented in tables XIII and XIV. Table XII indicates that the

improvements of the first, second, third, and fourth eigenvalues are 100 percent

Also, the eigenvelocities in table XIV show the same improvements, that is, nearly

100 percent improvement over the analytical results for the first, second, third, and

fourth modes. Overall, the results of the four-mode system identification appear

quite satisfactory.

4) Method 1, Five--Mode System Identification: The results of this computer run

are documented in figure 26, and in tables XV and XVI. Table XV indicates that the

real portions of the first, second, and third have improved somewhat, but not nearly

as much as with the two-mode to four-mode system identification. The real

portions of the fourth and fifth modes did not improve, and in fact they became

worse than the analytical eigenvalues. The imaginary portions of all eigenvalues

did not improve at all. Also, the eigenvelocities in table XVI show the same

divergence, that is, the magnitudes of nearly all eigenvelocities either remained the

same or worsened. The values of the orthogonality condition matrix (equation

(3.10)) have been plotted in figure 26 with the values based upon the correlated

modal properties and the test spatial property matrices. We can see in figure 26 that

the off--diagonal terms are not near zero, and in fact some of their values are very

close to the diagonal terms. Therefore, the method 1 system identification using

five modes failed.
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4.6.2 Results for 12-BAR Truss, 95 Model, Method 2

Although the system identification for the 90 model has been performed with

the entire range of available modes (two to five modes), only the lower and upper bonds

of the these computer runs will be presented here.

1) Method 2, Two-Mode System Identification: The results of this computer run

are documented in tables XVII and XVIII. Table XVII indicates that the

improvements of the first and second eigenvalues are 100 percent. Also, the

eigenvelocities in table XVIII show the same improvements, that is, nearly 100

percent improvement over the analytical results for the first and second modes.

Overall, the results of the two-mode system identification appear quite satisfactory.

2) Method 2, Five-Mode System Identification: The results of this computer run

are documented in figures 27 and 28, and in tables XIX and XX. Table XIX

indicates that the improvements of the first, second, third, fourth, and fifth

eigenvalues are 100 percent. Also, the eigenvelocities in table XX show the same

improvements, that is, nearly 100 percent improvement over the analytical results

for the first, second, third, fourth, and fifth modes. Because both the stiffness and

damping matrices axe correlated in method 2, the orthogonality conditions based on

equations (3.10) and (3.11) are presented pictorially. Figure 27 shows the

orthogonality condition matrix based on equation (3.10) and figure 28 shows the

orthogonality condition matrix based on equation (3.11). According to these

figures all the off--diagonal terms are near zero, except for one term, 1-$2. If

smaller off-diagonal terms in the orthogonality condition matrices are desired, then

either the tolerances for the convergence criteria in method 2 should be lessened, or

a convergence criterion based on off-diagonal terms should be added. However,

the down side of lessening the tolerances for the convergence criteria, or adding a

convergence criterion for the off--diagonal terms of the orthogonality condition

matrices, requires more iterations and longer computer usage time. Overall, the

results of the five-mode system identification appear quite satisfactory.
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4.6.3 Results for 12-BAR Truss, 90 Model, Method 1

1) Method 1, Two-Mode System Identification: The results of this computer run

are documented in tables XXI and XXII. Table XXI indicates that the

improvements of the first and second eigenvalues are 100 percent. However, the

imaginary portion of the first mode has worsened somewhat. Also, the

eigenvelocities in table XVIII show the same improvements, that is, nearly 1O0

percent improvement over the analytical results for the first and second modes.

Overall, the results of the two-mode system identification appear quite satisfactory.

2) Method 1, Five-Mode System Identification: The results of this computer run

are documented in tables XXIII and XXIV. Table XXIII indicates that there is a

general improvement of the real portions of the second, third, and fourth

eigenvalues. However, the magnitudes of the rest of the eigenvalues have

worsened. Also, the eigenvelocities in table XVIII show some occasional

improvement, but in general the eigenvelocities have worsened. Overall, the

results of the five-mode system identification is unsatisfactory.
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4.6.4 Results for 12-BAR Truss, 90 Model, Method 2

1) Method 2, Two-Mode System Identification: The results of this computer run

are documented in tables XXV and XXVI. Table XXV indicates that the

improvements of the first and second eigenvalues are 100 percent. Also, the

eigenvelocities in table XXVI show the same improvement, that is, nearly 1 O0

percent improvements over the analytical results for the first and second modes.

Overall, the results of the two-mode system identification appear quite satisfactory.

2) Method 2, Five-Mode System Identification: The results of this computer run

are documented in tables XXVII and XXVIII. Table XXVII indicates that the

improvements of the first, second, third, fourth, and fifth eigenvalues are near 100

percent. Also, the eigenvelocities in table XXVIII show the same improvements,

that is, nearly 1O0 percent improvement over the analytical results for the first,

second, third, fourth and fifth modes. Overall, the results of the five-mode system

identification appear quite satisfactory.
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4.7 44--BAR Truss

The finite element model of the 44-BAR space truss is shown in figures 29 and

30. The MSC/NASTRAN finite element program was used to model the 44-BAR truss.

As can be observed in figure 29, the 44-BAR space truss consists of three bays. Each

bay of the truss consists of four longerons, four battens, and five diagonals. The

numbers in figure 29 represent the f'mite element node numbers. Nodes 1 through 4 and

17 through 40 were grounded. The remaining nodes can translate in three orthogonal

directions. We can see in figure 30 that there are 44 ROD elements (designated by the

abbreviation RD). ROD elements in MSC/NASTRAN are general purpose elements

with tension and compression capability. Therefore, the stiffness matrix of a ROD

element is the same as the stiffness matrix of a simple spring. The mass of a ROD

element is divided by two and the masses are placed on the respective two nodes

surrounding the ROD element. Figure 30 also shows that three viscous dampers

OIISC), designated by the abbreviations VS, are connected to every joint of the truss.

The purpose of these elements is to resist the dynamic motion of the connecting joint in

each translational direction. Thus, they represent the viscous damping in the joints of

the truss. The VISC elements in the MSC/NASTRAN finite element program are

general purpose elements that represent the general viscous dampers. In other words,

the force produced by an element is equal to the velocity of the connecting

degree--of-freedom times a damping coefficient.

ROD elements of the analytical 44-BAR truss finite element model are made of

steel and have the following properties:

Ilk

Modulus of elasticity = E = 30.0E6-_

Poisson's ratio = v =. 33

Outer diameter of truss members = 0. D. = 1.0 in

Thickness of truss members = t = 0. 075 Ot

-- $t_¢2
Mass density of truss members = 0 = 0. 0283/b in

The VISC elements of the analytical 12-BAR truss finite element model have

the following property:

/b secDamping coefficient = C = 1.0
HI

It should be noted that the selected value of the damping coefficient is quite

large and based on this selection the real and imaginary parts of the eigenvalues and
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eigenvectors have the same order of magnitude. This selection determines whether the

methodology and the FORTRAN program in this study can support and handle

structures with large damping.

In an effort to visualize the vibration motion of the analytical finite element

model of the 44-BAR truss, the complex eigenvalue-eigenvector extraction of

MSC/NASTRAN was activated, and the modal deformation plots have been included

here. The modal deformation plots for the first four modes of the 44-BAR truss when it

contains the analytical spatial properties are found in figures 31 through 38. Figures 31

through 34 represent the real portion of the modal deformations, while figures 35

through 38 represent the imaginary portion of the modal deformations. In order to better

visualize and understand the motion of the 44-BAR truss, the modal deformations have

been superimposed over the undeformed shape of the truss. We can see in figures 31

through 38 that the modal deformation plots represent the system level modes, where the

entire structure is in motion. Mode 3 is almost completely torsional.

The following steps were taken to construct a test model :

I)The coefficientsofthe VISC elements 46,48, 50 through 53,55, 58,60,and 62

were varied.When thedamping coefficientsoftheseelements were varied,nearly

40 percentof the elements of the damping matrixin the testmodel had different

valuesthan those inthe analyticalmodel

2) The modulus of elasticity of the diagonal elements, namely ROD elements 29

through 37 were varied. When the modulus of elasticity was varied, the stiffness of

the ROD elements would vary proportionally. In general, when the stiffness values

of diagonal elements of a truss are varied, the bending stiffness is greatly influenced

because a large portion of the bending stiffness and torsional stiffness is due to the

action (tension and compression) in the diagonal elements.

The ROD elements and the VISC elements were varied so that the torsional and

bending modes would couple. Therefore, the differences between the modal

deformations of the test model and the analytical model are more severe than those of the

12-BAR truss. Variance of the properties of the diagonal ROD elements was not done

randomly. When considering the diagonals, because of the connectivity of these

elements to the joints, and the fact that they connect to the joint at an angle, the effective

stiffness of a joint combined with that of a diagonal may be different from the effective

stiffness of the joint combined with that of the longerons or of the battens. Selection of

the VISC elements was done randomly by the author who assumed that the

manufacturing process for the joints might have been different enough to create such

different damping coefficients for the truss joints. However, in a practical structural

system, the difference between the analytical spatial properties and the test spatial
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properties cannot be as severe as 10 percent of 50 percent of the joints. The 5 percent or

10 percent reduction of the analytical spatial properties was used here only to examine

the robustness of the methodology of this study.

In an effort to examine the accuracy and robustness of the methodology of the

system identification and the FORTRAN program used for this study, the values, as

described above were varied twice. The first variation of the values was a 5 percent

reduction of the analytical model's properties. All the simulation computer runs for this

5 percent reduction were called the 95 model. The second variation of the values was a

10 percent reduction of the analytical model's properties. All of the simulation

computer runs for this 10 percent reduction were called the 90 model. The results for the

95 model were satisfactory. Because the variation in spatial properties of the 90 model

are more severe than those of the 95 model, only the results of the 90 model are presented

here.

In an effort to visualize the vibration motion of the test finite element model of

the 44-BAR miss, the complex eigenvalue-eigenvector extraction of the

MSC/NASTRAN was again activated. The modal deformation plots have been

included here in figures 39 through 46 for the first four modes of the 44-BAR truss, 90

model. When comparing the modal deformation plots of the 90 model with those of the

analytical model, the only similarity that can be identified is between the real portion of

the second and the third modes. Due to unsymmetric variance in the spatial properties of

the analytical model it is expected to have such large differences between the modal

deformations of the test model and those of the analytical model. We can see in figures

31 through 38 that the modal deformation plots represent the system level modes where

the entire structure is in motion. Similar to the modal deformations of the analytical

model, mode 3 is nearly pure torsional.

After the simulation computer runs were completed, the test modal data were

saved on tape for the system identification process. Then the system identification was

begun by exercising method 1 and method 2 presented in chapter HI. The system

identification of the 95 model (when using method 1) was performed with two modes

(modes 1 and 3), three modes (modes 1,3, and 5), four modes (modes 1, 3, 5, and 7), and

five modes (modes 1,3, 5, 7, and 9). The motivation for using a wide variety of modes in

identifying the 90 model was to examine the degradation in the quality of the test

eigenvalues and eigenvectors, if any. The results of the 90 model when using method 1

and method 2 have been documented and discussed for only two- and five-mode system

identification to reduce the length of this document.
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4.7.1 Results for 44-BAR Truss, 90 Model, Method 1

1) Method 1, Two-Mode System Identification: The results of this computer run

are documented in tables XXIX and XXX. Table XXIX indicates that the

improvement of the first and second eigenvalues are 100 percent. Also, the

eigenvelocities in table XXX show the same improvement, that is, nearly 100

percent improvement over the analytical results for the first and second modes.

Overall, the results of the two-mode system identification appear quite satisfactory.

2) Method 1, Five-Mode System Identification: The results of this computer run

are documented in tables XXXI and XXXII. Table XXXI indicates that there is a

general improvement of the real portions of the first, second, and fifth eigenvalues.

However, the magnitudes of the rest of the eigenvalues have worsened. Also, the

eigenvelocities in table XXXII show some occasional improvement, but in general

the eigenvelocities have worsened. Overall, the results of the five-mode system

identification are unsatisfactory.
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4.7.2 Results for 44-BAR Truss, 90 Model, Method 2

1) Method 2, Two-Mode System Identification: The results of this computer run

are documented in tables XXXIII and XXXIV. Table XXXIII indicates that the

improvement of the first and second eigenvalues are 100 percent. Also, the

eigenvelocities in table XXXIV show the same improvement, that is, nearly 100

percent improvement over the analytical results for the first and second modes.

Overall, the results of the two-mode system identification appear quite satisfactory.

2) Method 2, Five-Mode System Identification: The results of this computer run

are documented in tables XXXV and XXXVI. Table XXXV indicates that the

improvements of the first, second, third, fourth, and fifth eigenvalues are near 100

percent. Also, the eigenvelocities in table XXXVI show the same improvements,

that is, nearly 100 percent improvement over the analytical results for the first,

second, third, forth, and fifth modes. Overall, the results of the five-mode system

identification appear quite satisfactory.
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4.8 Conduding Remarks

The result of the system identification using equation (3.34) appeared

satisfactory when a small number of modes were selected. However, as the number of

modes increased, the quality of the eigenvalues and eigenvelocities deteriorated. The

reason for this degradation is that the differences between the modal deformations of the

higher modes of the test model and the analytical model axe higher than those of the

lower modes. In fact, generally speaking, higher modes, even if they are system level,

would contain some level of local modes. Because of the severe local differences

between the test model and the analytical modes, the local modes of the two models are

extremely different. As a result, these extreme local differences in modal deformations

will corrupt the final result. Overall, the system identification using method 1 provides

successful results with one to three modes. It is recommended, however, to use more

modes, because the first mode does not represent the entire structural system from the

kinetic energy standpoint.

As a result of system identification using method 1, the test damping matrix

becomes complex. It was discovered, by observation, when applying method 1 to the

12-BAR truss and the 44-BAR truss, that even for highly damped structural systems,

the imaginary portion of the test damping matrix is much smaller (two to three orders of

magnitude) than the real portion. As a test, the system identification was repeated

without the imaginary portion of the test damping matrix. The results of these computer

runs were very similar and sometimes identical to those done with the entire test

damping matrix. Therefore, the option in method 1 that eliminates the imaginary

portion of the test damping matrix was left as part of the FORTRAN program. Because

the results of the system identification using a full complex test damping matrix are so

similar to those using the real portion of the test damping matrix, no tables or figures are

provided here.

The result of the system identification using equations (3.47), and (3.48)

appeared satisfactory when any number (small or large) of modes was selected. The

computer runs for the class of structural systems in this study required two to fifteen

iterations to converge. A total of sixteen computer runs for both the 12-BAR truss and

the 44-BAR truss were made. Two of these computer runs did not converge. These

nonconverging computer runs were the 95 model of the 12-BAR truss using two modes,

and the 95 model of the 44-BAR truss using three modes. There were some other

computer runs that did not converge at the beginning, but when the convergence criteria

were loosened up, they converged. Overall, the system identification using method 2

provides successful results with one to five modes. It is recommended, however, to use

more than one mode, since the first mode does not represent the entire structural system

from the kinetic energy standpoint. With an increase in the number of modes, however,

the number of iterations and the computer usage time increases. It is recommended to
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useonlytheimportantmodeswith thehighestkineticenergywhenusingmethod2tocut
downthenumberof iterationsandeliminatethepossibilityof nonconvergence.Also in
thecaseof nonconvergence,it isrecommendedto useasmallernumberof modesrather
thanlooseningup the convergencecriteria becausewhentheconvergencecriteria is
loosenedup, thequality of theeigenvaluesandeigenvectorsdegradefor all modes.

Whenusing a small number of modes, both methods 1 and 2 were equally

successful in correlating the eigenvalues, and the correlated eigenvalues are within a

small percentage, most often less than one percent, of the test eigenvalues.

When a large number of modes (more than three modes) were selected for the

system identification, method 2 provided accurate results, and method 1 converged to

incorrect results. The reason for the higher success of method 2 is that this method is

based on an iterative technique given a set of convergence criteria. This means that if the

desired solution (eigenvalues and eigenvelocities) are not reached, the FORTRAN

program changes the damping coefficients by some tolerance and repeats the problem

until an acceptable solution is achieved. The disadvantage of method 2 over method 1 is

that it requires more computer usage time. Each iteration of method 2 requires

approximately as much computer usage time as that required during all phases of

method 1.

Method 1 appeared to be more successful than method 2 when a small number

of modes was selected for the system identification. The success here is defined as the

quality and closeness of the eigenvelocities, in other words, the correlated

eigenvelocities came closer to the test eigenvelocities using method 1. This success and

better performance of method 1 can be attributed to the closed form solution of the

equation for the damping matrix. Perhaps if the convergence criteria for method 2

considered the differences between the eigenvelocity vectors (as opposed to kinetic

energy values) of the test model and the correlated model, method 2 would be more

successful than method 1. This convergence criteria would definitely be more stringent,

because the size of the eigenvelocity matrix is n--by--m as opposed to m-by--m of the

kinetic energy matrix. Also, the kinetic energy matrix is a diagonal matrix, which means

that there are less terms (m terms) in the matrix to deal with than the number of terms

consisting the eigenvelocity matrix (n*m terms). The disadvantages of making the

convergence criteria in method 2 more stringent in order to achieve better quality

eigenvelocities are the increase in number of iterations, increase in computer usage

time, and increase in the possibility of non--convergence.

Overall, method 1 is somewhat better than method 2 because of the following:

1) It does not need convergence criteria, thus, the analyst does not have to spend

time on setting convergence criteria.
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2) It requiresonly one iteration, thus it takes less computer usage time to execute.

3) The test eigenvelocities of method 1 are closer to the test eigenvelocities.

Therefore, the eigenvectors of method 1 are more accurateto use in decoupling the

equation of motion for load analysis when either the mode displacement method or

the mode acceleration method are used.
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CHAPTER V

CONCLUSIONS AND FUTURE WORK

Two approaches toward structural modification were proposed to correct the

nonproportional damping matrix of a truss structure. Several formulations for both

methods were derived. Method 1 uses the weighted difference between the test damping

matrix and the analytical damping matrix as the basis for a minimization problem with

the orthogonality condition as the constraint equation. Method 2 uses the weighted

difference between the test damping matrix and the analytical damping matrix, as well

as the weighted difference between the test stiffness matrix and the analytical stiffness

matrix, as the basis for a multi-objective minimization problem with the equation of

motion as the constraint equation.

Although the formulations of method 1 of this study modify only the damping

matrix, this method can also be applied to structures whose stiffness matrix contains

inherent inaccuracies. In fact, the same structures (with the same spatial properties)

were used for both methods to examine method 1 for structures with inaccuracies in both

the damping matrix and the stiffness matrix, and to compare the results of method 1 with

those of method 2.

A FORTRAN program was developed which uses the formulations of methods

1 and 2 for system identification of a structural system, which can either read the

user-generated spatial matrix data or interface with MSC/NASTRAN OUTPUT4

format data. The FORTRAN program can also provide simulated data to replace actual

test data and extract the complex eigenvalues and eigenvectors of structural systems

possessing rigid body motion.

The entire methodology, including formulations for both methods, was

developed and checked using a simple four-degree-of-freedom system. Then the

methods were applied to two classes of structures, namely, a plane truss and a space

truss. The spatial property matrices of both trusses were varied in such a manner that the

axial, bending, and (in the case of the space truss) torsional modes would couple. Up to

50 percent of the coefficients of the spatial property matrices were varied by up to 10

percent of the value of the analytical matrices. The results of this study showed nearly

100 percent improvement of the correlated eigensystem over the analytical

eigensystem.

The performances of the methods developed in this study were compared, and it

was concluded that method 1 is a better method to use for system identification when up

to three modes are selected for the process. Also in this comparison, it was concluded

that method 2 can handle a larger number of modes in system identification. However,
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thecomputerusagetimeandtheanalyst'stime needed to set up and test convergence

criteria with each problem when using method 2 would require extra effort.

The results of this study for a simple four-degree-of-freedom system, a plane

truss structure, and a space truss structure prove that the objectives of this dissertation, as

stated in the Introduction, have been fully achieved.

Only simulated data were used in this study and although the author made a

large number of changes in the spatial property matrices of the analytical model in order

to simulate the test data, the real test of the methods proposed in this study will be their

implementation in an actual modal survey test. The methodology, formulations, and

FORTRAN program developed in this study should be applied to the measured data

from an actual modal survey test of a structure that possesses complex modes. Future

work relating to this study should consist of both the implementation of the proposed

formulations to a modal survey test and the development of more accurate analytical

methods to solve the set of governing equations ((3.47) and (3.48)) in method 2.
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C
C

INTEGERLDA,LDB,LDEVEC,N
PARAMETER(N=72,NN=36,1_t=5,LDA=N,LDB=N, LDEVEC=N)

C If IINPUT=I, this program will be a sfmulatfon/generator program.
C If IINPUT-O, this program will be a test correlation program.
C If IDAMP=I, this program will correct the damping matrix.
C If ISTIFF=I, thts program will correct the stiffness matrix.

PARAMETER(IINPUT=O,IDAHP=I,ISTIFF=O)

PARAMETER(nm=500)

C If IREAD=], this program wtll read a HSC/NASTRANoutput4 file.
C If IFREQ=I, this program will use the CG etgenproblem routine.

PARAMETER(IREAD-I,IFREQ=I)

tnteger terr,matz
double precision arI(nm,n),at](nm, n),wrl(n),wll(n),

X zrl(nm, n),zil(nm,n),zr2(nm, n),zt2(nm,n),
x fvl(n),fv2(n),fv3(n)
COHPLEX*16P,T6

C DOUBLEPRECISION REAL,AIHAG,R,T5
DOUBLEPRECISION R,T5
REAL REAL,AIRAG
INTEGER I,NOUT,NNI,NN2
REAL ANACH,GPICG,PI,VAR

C COMPLEXA(LDA,N),ALPHA(N),B(LDB,N),BETA(N),EVAL(N),EVEC(LDEVEC,N)
C(X4PLEXBETAI(5OO),EVAL(5OO),EVEC(5OO,5OO),ACORG(500,500)

C COMPLEXA(5OO.5OO),B(5OO.5OO),BETAI(5OO).EVAL(5OO).EVEC(500.500)
REAL ALPHA(5OO),BETA(5OO),ZR(5OO,5OO),ZI(5OO,5OO),ALFI(500)
REAL AR(500,500),AI(500,500)
REAL BR(5OO.5OO),BI(5OO.SOO),ALFR(500)
COMPLEXAW(5OO,5OO),AVEC(5OO,5OO),AVEC_T(500,500)
COMPLEXOUMlg(500,500),DUHZO(500,500),OUN21(500,500)
COMPLEXDUH1(500,500), OUR2(500,500), DUM3(500,500), DUH4(500.500)
COMPLEXDUH6(500,500),DUHT(500,500),DUHS(500,500),DUM9(500,500)
COMPLEXDUHlO(500,500),DUN11(500,500),DUN12(500,500)
COMPLEXDUM13(500,500),DUM14(500,500),DUM15(500,500)
CONPLEXDUH16(500,500),DUHI7(500,500),DUMI8(500,500)
COMPLEXAKC(5OO,5OO),AHC(5OO,5OO),ACC(500,500)
COMPLEXTW(5OO,5OO),TVEC(5OO,5OO),TVEC T(500,500)
COMPLEXAVECD(5OO,5OO),AVEC D T(5OO,5OO),AKORG(500,500)
COMPLEXTVEC-D(5OO,5OO),TVEC-D-T(500,500) . . .
COMPLEXEB(_O,5OO).TB_O(5OOT_O),TB(5OO.5OO),CFAC(500,500)
COMPLEXEA(5OO,5OO),TA(5OO,5OO),AKT(5OO,5OO),ACT(500,500)
COMPLEXDUMM1,DUM5(500,500)
REAL AK(500,500),AN(500,500),AC(500,500)
REAL ITER(5OO),AA(500,500)
COMPLEXToU
COMPLEXA(500,500),B(500,500)
INTEGER NROW,NCOL,J,K,II,I2,I3,I4,1FLAG

C EXTERNAL AMACH,GPICG,GVCCG,UMACH
CHARACTER MATRIX*B0
CHARACTER*12 DOCI

C

- 178-



C

IF(IINPUT .EQ. 1)DOCl='TR441.IN'
IF(IINPUT .EQ. O) DOCl='TR44.IN'
OPEN(UNIT=I,FILE=DOCI,STATUS: 'OLD')

OPEN(UNIT=3,FZLE='TR121.OUT',STATUS='OLD')
OPEN(UNIT=2,FILE='TR12.0UT',status-'new')
OPEN(UNIT=4,FILE='SCRI.0UT',status='new')

IF(IINPUT .EQ. 1) THEN
OPEN(UNIT=5,FILE='SCR2.0UT',status='new')

ELSE
ENDIF

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C $$$
c $$$
c $$$
C Variable Definition $$$
c $$$
c _ $$$
c $$$
c$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
c$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

C N=2*NN
C NN
OHM
C AK(NN,NN)
C AC(NN,NN)
C AM(NN, NN)
C AK(NN,NN)
C AC(NN,NN)
C AM(NN,NN)
C A(N,N)
C B(N,N)
C EVAL(N)
C EVEC(N,N)
CAW (MM,MM)
C AVEC(NN,MM)
C AVEC T(MM,NN)
C TW(I.I)
C TVEC(NN,MM)
C TVEC_T(MM,NN)
C AVEC D
C AVEC-D T
C TVEC D
C TVEC-D T

C EB(MM,MM)
C TB O(MM,MM)
C TB'(MM,MM)
C CFAC(MM,MM)

number of degree of freedom
number of modes
stiffness matrix
damping matrix
mass mattrx
complex form of stiffness matrix
complex form of damping matrix
complex form of mass matrix
A matrix
B matrlx
subroutine calcu]ated etgenvaIues
subroutine calcu]ated eigenvectors

analytica] frequencies
analytical etgenvectors
transpose of analytical eigenvectors

test frequencies
test elgenvectors
transpose of test eigenvectors
analytical velocity
transpose of analytical velocity

test velocity
transpose of test velocity
analytical orthogonallty number
old test orthogonallty number
test orthogonality number
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C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
CS$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C $$$
C $$$
c $$$
C In this section, The stiffness, mass, $$$
C damping, test etgenvectors,and test $$$
C etgenvalues are read. $$$
c $$$
c$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$S$$$$$$$$$$$$$$$
c$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

IFLAG=O
C READ(1,17)NROW
C MRITE(2,17)NROW
C17 FORMAT(IS)
C TYPE 2,'TITLE=DELTA AKC "4.'
CW*_**************t_*****_t*_**_t*_********_t*****t_*********_********_*_*_

C The following two ltnes are for use in LZIT routine.
DO 2 I=I,N

2 ITER(I)--1

C_.t***_***_._**_._**_**_***_***_._***t**_._**_**_*********_._._***_

C If tread=l, then the output4 format of MSC/NASTRANis read
IF(IREAD.EQ.]) ;HEN
CALL RNAS(AK,AH,AC,NN)
DO 3 I=l,l_
DO4 J-1,NN

AKCII,J)_AKII,J)
_C(l,J)=_(I,J)
ACC(I,J) AC(I,J)
ACORG(I,J)=ACC(I,J)
AKORG(I,J)=AKC(I,J)

4 CONTINUE
3 CONTINUE
C**t_._*************_._***_****_t******_***_*_._.t_*_****_*********

ELSE

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Read mass mtrlx

C
C
27
20
19
18

NROW=NN
NCOL=MM
DO 18 I=I,NROW
DO 19 J=I,NROW
READ(I,20)AM(I,J)
AMC(I,J)=AM(I,J)
WRITE(*,20)AM(I,J)
WRITE(*,27)AMC(I,J)
FORMAT(IOX,2D20.6)
FORMAT(FIO.6)
CONTINUE

CONTINUE

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Read stiffness matrix
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C
C
22
21

DO 21 I=I,NROW
DO 22 J=I,NROW
READ(I, 20)AK(I,J)
AKC(I,J)=AK(I,J)
AKORG(I,J)=AKC(I,J)
TYPE *,I,J,AKC(I,J)
WRITE(*,20)AK(1,3)
WRITE(2,20)AK(I,J)
CONTINUE
CONTINUE

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

C Read damping matrix

C
C
24
23

DO 23 I=I,NROW
DO 24 J=I,NROW
READ(I,20)AC(I,J)
ACC(I,J)=AC(I,J)
ACORG(I,J)=ACC(I,J)
WRITE(*,20)AC(I,J)
WRITE(2,20)AC(I,J)
CONTINUE
CONTINUE

ENDIF

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

C If IINPUT is not zero then this run is an input generator, and the
C following read section wlll be skipped.

IF(IINPUT .EQ. I) GO TO 5

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

C Read the test frequencies

31
C
30

DO 30 I =I,MM
READ(3,31)TW(I,I)
FORMAT(2E20.g)
WRITE(*,3I)TW(I,I)
CONTINUE
MATRIX=' TEST EIGENVALUES
CALL WRTT(MATRIX,TW,MM,MM)

Tl_ ¢

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Read the test eigenvectors and eigenvelocltes

DO 40 I=I,MM
DO 41J=I,NN
READ(3,42)TVEC D(J,I)

42 FORMAT(2E20.9)-
41 CONTINUE
40 CONTINUE

DO 43 I=I,MM
DO 44 J=I,NN
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44
43

READ(3,42)TVEC(J,I)
CONTINUE

CONTINUE

MATRIX=' TEST EIGENVECTORS TVEC'
CALL WRTT(MATRIX,TVEC,NN,NM)
MATRIX=' TEST EIGENVELOCITIES TVEC O'

CALL WRTT(MATRIX,TVEC_D,NN,MM)

c$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
c$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
c $$$
c $$$
c $$$
C In thls section, A and B matlces are formed. $$$
c $$$
c $$$
c $$$
c$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
c$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

5 REWIND(UNIT-4)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Initialize the A and B matrices.

DO 16 I=I,N
EVAL(I)-(O.,O.)
DO 15 J=I,N

EVEC(I,J)=(O.,O.)
AR(I,J)=(O.,O.)

BR(I,J)_(O.,O.)
AI(I,J) (0.,0.
BIII,J)=(O.,O.I
DUNIg(I,J)-AKC(I,J)

15 -CONTINUE
16 CONTINUE

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C $$$
C $$$
C $$$
C In this section, complex elgenvalues $$$
C and eigenvectors are extracted using $$$
C the CG subroutine $$$
c $$$
c$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
c$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

C If IFREQ=I use the CG subroutine for eigenproblem solution.

IF(IFREQ .NE. 1) GOTO 3320

C In this section the A=ARI,AII Is written into file 4. The solution
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C of the problem is AX=Lamda*X. The A matrix here is -(B**-I)*A.

C DUM4 matrix is the inverse of DUMI or Mass matrix.

CALL MATINVC(DUMIg,DUM20,NN,NR)
CALL HULT(DUM19,DUM20,AMC,NN,NN,NN)
CALL MULT(DUM21,DUM20,ACC,NN,NN,NN)

C DUM5 matrix is the A matirx for CG subroutine.

CALL MULT(DUM5,DUM1,AKC,NN,NN,NN)

DO 3000 I=I,NN
DO 3010 J=I,NN

WRITE(4,3020)AR{I,J),AI(I,J)
3020 FORMAT(2E20.9)
3010 CONTINUE
3000 CONTINUE

3040
3030

DO 3030 I=I,NN
DO 3040 J=I,NN

IF(I .EQ. J) THEN
T=(I.,O.)

ELSE
T=(O. ,0.)
ENDIF
WRITE(4,3020)T

CONTINUE
CONTINUE

3080
3070

DO 3070 I=I,NN
DO 3080 J=I,NN

DUMIg(I,J)=-DUMIg(I,J)
WRITE(4,3020)DUM19(I,J)

CONTINUE
CONTINUE

3100
3090

DO 3090 I=I,NN
DO 3100 J=I,NN
DUM21(I,J)=-DUM2](I,J)
WRITE (4,3020)DUM21(I,J)

CONTINUE
CONTINUE

REWIND(UNIT=4)

3200
3210

3230

DO 3200 I:],NN
DO 3200 J=I,NN
READ(4,3210)ARI(I,a),AII(I,J)
FORMAT(2E20.9)

DO 3230 I=I,NN
DO 3230 J=I,NN
READ(4,3210)ARI(I,J+NN),AII(I,J+NN)
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3240

3250

DO 3240 I=I,NN
DO 3240 J=I,NN
READ(4,3210)ARI(I+NN,J),AIJ(I+NN,O)

DO 3250 I-I,NN
DO 3250 J=I,NN

READ(4,3210)ARl(I+NN,J+NN),AI1(I+NN,J+NN)

REWIND(UNIT=4)

matz=l
lerr=l.E-20
CALL cg(nm,n,arl,ail,wrl,wlI,matz,zrl,zil,fvl,fv2,fv3,ierr)

3301

3311

3312
330O

IF(IFLAG .EQ. 5) GO TO 3301
TYPE *,' MODE REAL
TYPE *,' ******** *********
DO 3300 I=I,N
WRITE(4,3311)l.ICMPLX(WRI(I),WII(I))
FORMAT(2E20.9)
IF(IFLAG .EQ. 5) GO TO 3300
IF(I.LT.IO)WRITE(*,3312)I,I./CMPLX(WRI(I),WI1(1))
FORMAT(5X,IS,3X,FI5.4,3X,F15.4)

CONTINUE

IMAGINARY'

C
C
C
3259

3275

C

3270
C

********** NORMALIZE SO THAT MODULUS OF LARGEST
COMPONENT OF EACH VECTOR IS I **********

DO 3259 K=1,5
IJl=l
IJZ=N
DO 3260 J = IJI,N
DO 3270 I = I, N

]F(I .EO. 1) T5 = DABS(ZRI(I,J))
R = DABS(ZRI(I,J))
TYPE *,I,ZR](I,J),ZII(I,J)
IF (R .GE. TS) THEN
T5 = R
I5=I

ELSE
ENDIF

CONTINUE
TYPE*,' FIRST TIME',I5,ZRI(I5,J),ZII(15,J)

X

X

X

X

DO 3280 I=I,N
T6=
DCNPLX(ZRI(I,J),ZII(I,J))/DCMPLX(ZRI(I5,J),ZII(I5,J))

ZRI(I,J)=REAL(
CMPLX(ZRI(I,J),ZII(I,J))/CMPLX(ZRI(15,J),ZII(I5,J)))
ZII(I,J)=AIMAG(
CMPLX(ZRI(I,J),ZII(I,J))/CMPLX(ZRI(15,J),ZII(15,J)))
T6=
CMPLX(ZRI(I,J),ZII(I,J))
IF(ABS(ZRI(I,J)) .GT. 1.) THEN
IJl = IJl - 1
GO TO 3275

ELSE
ENDIF
TYPE *,I,ZRI(I,J),ZII(I,J)
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3290
3280

IF(IFLAG .EQ. 0 .AND.
XJ .LE. NN .AND. ABS(REAL(T6)) .GT. I.) THEN

TYPE *,'DO NOT USE MODE J,,J,ABS(REAL(T6)),' NAG. OF
X VECTOR > I.'

ELSE
ENDIF
WRITE(4,3290)T6
FORMAT(2E20.9)
CONTINUE

3260 CONTINUE
C3259 CONTINUE

REWIND(UNIT=4)

DO 3330 I=I,N
READ(4,3340) EVAL(I)

C WRITE(*,3340) EVAL(1)
3340 FORMAT(2E20.9)
3330 CONTINUE

DO 3350 J=I,N
DO 3360 I=I,N

READ(4,3340) EVEC(I,J)
3360 CONTINUE
3350 CONTINUE

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C II AND 12 ARE COUNTERS

I]=N/2
I2=1+N/2

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C FORM THE A MATIRX

5O

DO 50 I=1,11
DO 50 J=I2,N

A(I,J)=AM(I,J-12+i)
AR(I,J)=AM(I,J-12+I)

51

DO 511=I2,N
DO 51J=1,11
A(I,J)=AM(I-II,J)
AR(I,J)=AM(I-II,J)

DO 52 I=I2,N
DO 52 J=I2,N

AR(I,J)=REAL(ACC(I-I2+I,J-12+I))
AI(I,J)=AIMAG(ACC(I-I2÷I,J-12+I))

52 A(I,J)=ACC(I-I2+I,J-12+I)

c$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C FORM THE B MATIRX

DO 53 I=I,II
DO 53 J=1,11
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53
B(Z,J)=AM(I,J)
BR(I,J)=AM(I.J)

54

DO 54 I=I2,N
DO 54 J=I2,N

B(I,J)=-AK(I-12+I,J-I2+I)
BR(I,J)=-AK(I-12+I,J-IZ+I)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Since the definition of A and B matrtx tn SIHL is
C different, that ls, A=-B and B=A, the fol]owfng
C equtva]enctm3 ls performed.

5g

C
C
117
115
116

DO 116 I=I,N
DO ]15 J=I,N
AA(I,J)--B(I,J)
WRITE(*,I17)I,J,A(I,J),B(I ,J)
WI_ITE(2,Ill)I,J,A(I,J),B(I,J)
FO_T (2X,I2,2X,12,2X,F15.6,2X,F]O.6,5X,FI5.6,2X,FIO.6)

CONTINUE
CONTINUE

IF(IFREQ .EQ. 1) GO TO 3320

C$$$$$SSSSSSSS$SSSSSS$SSSSS$$SS$S$SSSSSSSSSSSSSS$$$$
C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C $$$
C $$$
C $$$
C In this section, comlex elgenvalues $$$
C and elgenvectors are extracted. $$$
c $$$
c $$3
c$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
c$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

i

C DETERMINETHE COMPLEXEIGENVALUESAND EIGENVECTORS

CALL GVCCG(N,AA,LDA,A,LDB,ALPHA,BETA,EVEC,LDEVEC)
CALL LZHES(N,AA, N, A, N, EVEC, N, .TRUE.)
CALL LZIT(N,AA,N,A,N,EVEC,N,.TRUE.,ITER, ALPHA,BETA)

EPS1 = 1.0E-20
IERR = lOOOO0000
CALL CQZHES(NM,N,BR,BI,AR,AI,.TRUE.,ZR,ZI)
CALL CQZVAL(NM,N,BR,BI,AR,AI,EPSI,ALFR,ALFI,BETA,

$.TRUE.,ZR,ZI,IERR)
CALL CQZVEC(NM,N,BR,BI,AR,AI,ALFR,ALFI,BETA,ZR,ZI)

C
11

IX)10 I=I,N
IF (BETA(1) .NE. 0.0) THEN
EVAL(1)=C'MPLX(ALFR(1),ALFI(1))/BETA(I)

DO 1110 J=I,N
EVEC(I,J)=CMPLX(ZR(I,J),ZI(I,J))
WRITE(*,I])EVEC(I,J)
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1110

C

10

FORMAT(5X,15,3X,FI5.7,5X,FI5.7)
CONTINUE
ELSE
EVAL(I)=AMACH(2)

ENDIF
WRITE(*,II)I,EVAL(1)
CONTINUE

C
C
C
C
C

PI=GPICG(N,N,A,LDA,B,LDB,ALPHA,BETA,EVEC,LDEVEC)

CALL UMACH(2,NOUT)
CALL WRCRN('EVAL',I,N,EVAL,I,O)
CALL WRCRN('EVEC',N,N,EVEC,LDEVEC,O)
WRITE (NOUT,'(/,A,F8.5)')'PERFORMANCE INDEX = ',PI

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Initialize the AW and AVEC matricles

3320 DO 130 I=I,MM
DO 131J=I,NN

AW(I,J)=(O.,0.)
AVEC(J,I)=(O.,O.)

131 CONTINUE
130 CONTINUE

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C FORM THE EIGENVALUE, AW, AND EIGENVECTOR EVE MATIRCES
CAW AND AVEC MATRICES ARE N/2*N/2

AW(I,1)=EVAL(2)

AW(2,2)-EVAL(3)

AW(3,3)=EVAL(5)

AW(4,4)=EVAL(7)

AW(5,S)=EVAL(IO)
AW(5,5)=EVAL(14)
AW(6.6)=EVAL(14)

1150

DO 1150 I=I,NN
AVEC D(I,I)=EVEC(I,2)
AVEC_I,I)=EVEC(I+NN,2)
AVEC D(I,2)=EVEC(I,3)
AVEC_I,2)=EVEC(I+NN,3)
AVEC D(I,3)=EVEC(I,5)
AVEC_I,3)=EVEC(I+NN,5)
AVEC D(I,4)=EVEC(I,7)
AVEC_I,4)=EVEC(I+NN,7)
AVEC D(I,5)=EVEC(I,IO)
AVEC_I,5)=EVEC(I+NN,IO)

AVEC_D(I,6)=EVEC(I,14)
AVEC(I,6) EVEC(I+NN,14)
CONTINUE
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C This sction ts to provide simulated/test modes and mode shapes for the
C analysis model.

IF(IINPUT .EQ. O) GO TO 3380

DO 3390 I=I,MM
WRITE(5,3400)AW(I,I)

3400 FORMAT(2E20.9)
3390 CONTINUE

DO 3410 I=I,MM
DO 3420 J=I,NN
WRITE(S,3400)AVEC_D(J,I)

3420 CONTINUE
3410 CONTINUE

DO 3430 I=I,MM
D03440 J=I,NN
WRITE(5,3400)AVEC(J,I)

3440 CONTINUE
3430 CONTINUE

IF(IINPUT .EQ. I) THEN
TYPE *,'********** RENAMESCR2.0UT TO TR121.OUT **************'
TYPE *,' RENAME SCR2.0UT TO TRlZl.0UT'
TYPE *,' RENAMESCR2.0UT TO TR121.OUT'
TYPE *,' RENAMESCR2.0UT TO TR12I.OUT'
TYPE *,' RENAMESCP.2.0UT TO TRI21.0UT'
ELSE
ENDIF
IF(]INPUT .EQ. I) GO TO 1000

C WRITE THE EIGENVALUES

3380 MATRIX=' ANALYSIS EIGENVALUES AW'

IF(IFLAG.EQ.5)GO TO 149

IF(IFI .EQ. 902) THEN
MATRIX='MASS OPT., EIGENVALUE BASED ON C:(C-DELTA C)'

ELSE
IF(IF] .EQ. 903) THEN

MATRIX='MASS OPT., EIGENVALUE BASED ON C=(C-REAL(DELTA C))'
ELSE
IF(IFI .EQ. 904) THEN

MATRIX='STIFFNESS OPT., EIGENVALUE BASED ON C=(C-DELTA C)'
ELSE
ENDIF

ENDIF
ENDIF
CALL WRTT(MATRIX,AW,MM,MM)

C$$$$$$$$$$S$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C WRITE EIGENVECTORS
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MATRIX=' ANALYSIS EIGENVECTORS AVEC'
IF(IFI .EQ. 902) THEN

MATRIX='MASS OPT., EIGENVECTOR BASED ON C=(C-DELTA C)'
ELSE
IF(IFI .EQ. 903) THEN

MATRIX='MASS OPT., EIGENVECTOR BASED ON C-(C-REAL(DELTA C))'
ELSE

IF(IFI .EQ. 904) THEN
MATRIX='STIFFNESS OPT., EIGENVECTOR BASED ON C=(C_DELTA C)'

ELSE
ENDIF

ENDIF
ENDIF

CALL WRTT(MATRIX,AVEC,NN,MM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C WRITE VELOCITY VECTORS

MATRIX=' ANALYSIS EIGENVELOCITY AVEC D'
IF(IFI .EQ. 902) THEN

MATRIX='MASS OPT., EIGENVEL. BASED ON C=(C-DELTA C)'
ELSE

IF(IFI .EQ. 903) THEN
MATRiX='MASS OPT., EIGENVEL. BASED ON C=(C-REAL(DELTA C))'

ELSE
IF(IFI .EQ. 904) THEN

MATRIX='STIFFNESS OPT., EIGENVEL. BASED ON C=(C-DELTA C)'
ELSE
ENDIF
ENDIF

ENDIF

CALL WRTT(MATRIX,AVEC_D,NN,MM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
c$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
c$$$$$$$$ $$$$$$$$$
c$$$$$$$$ Determine: $$$$$$$$$

C$$$$$$$$ normalized vectors based on total energy $$$$$$$$$
C$$$$$$$$ and orthogonallty matrices $$$$$$$$$
C$$$$$$$$ $$$$$$$$$
C$$$$$$$$ $$$$$$$$$
C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

C DETERMINE THE TRANSPOSE OF AVEC MATRIX AND CALL IT AVEC T MATRIX
C DETERMINE THE TRANSPOSE OF TVEC MATRIX AND CALL IT TVEC-T MATRIX

149

151
150

DO 150 I=I,NN
DO 151 J=I,MM
AVEC T(J,I)=AVEC(I,J)
TVEC-T(J,I)=TVEC(I,J)
CONTINUE
CONTINUE
MATRIX=' AVEC T'

CALL WRTT(MATRIX,AVEC_T,_, NN)

- 189 -



MATRIX=' TVEC T'

CALL WRTT(MATRIX,TVEC_T,MM,NN)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Determine the transpose of AVEC D and call it AVEC D T
C Determine the transpose of TVECD and call it TVECDZT

DO 3IO I=I,NN
DO 315 J=I,MM
AVEC D T(J,I)=AVEC D(I,J)
TVECD_T(J,I)=TVECD(I,J)

315 CONTINUE
310 CONTINUE

MATRIX=' AVECD T '
C CALL WRTT(MATRIX,AVECD T,NMTN_)

MATRIX=' TV_C D T'
C CALL WRTT(MATRIX,TVEC.D_ITNR,NN)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Normalize the ANALYSIS Eigenvectors to mass martlx

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE M * AVEC D

C
C

CALL MULT(DUMI,AMC,AVEC_D,NN,NN,NM)
MATRIX=' DUNI = N * AVEC D'
CALL WRTT(MATRIX,DUMI,NN,MM) -

c$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
c DETERMINEDUN2 = AVEC_D_T* DUMI - AVEC_D_T* N * AVEC_D

CALL MULT(DUM2,AVEC D T,DLINI,NM,NN,NM)
MATRIX=' DUN2 ; AVEC D T * M * AVEC_D'
CALL WRTT(MATRIX,DUM2,1_4,FIM_

2500

DUMMI=(O.,0.)
DO 2500 I=I,MM '

DL_4M1= DUMN1+ DUM2(I,I)
CONTINUE

2510

DO 2510 I=I,MM
DUN2(I,I)=DUN2(I,I)/DUMMI

CONTINUE

IF (IFLAG .ME. 5 .OR. IFLAG .NE. 4) THEN
MATRIX=' ANALYSIS KINETIC ENERGY FACTORS'
CALL WRTT(MATRIX,DUM2,MM,MM)
ELSE
ENDIF

2100

DO 2100 d=I,MM
CFAC(J,J)=((DUMZ(J,J))**.5)

CONTINUE

MATRIX=' FACTOR FOR ANALYSIS VECTORS'
CALL WRTT(MATRIX,CFAC,MM,MM)
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2130
2120

DO 2120 I=I,MM
DO 2130 J=I,NN
AVEC D(J,I)=AVEC D(J,I)/CFAC(I,I)
AVEC_J,I)=AVEC(JTI)/CFAC(I,I)
CONTINUE

CONTINUE

IF (IFLAG .NE. 5 .OR. IFLAG .NE. 4) THEN
IF (IFLAG .NE. 5) THEN

MATRIX=' NORMALIZED AVEC D'
CALL WRTT(MATRIX,AVEC D,NN,MMT
MATRIX=' NORMALI_ED AVEC'
CALL WRTT(MATRIX,AVEC,NN,MM)
ELSE
ENDIF

DO I=I,NN
DO J=I,MM
AVEC D T(J,I)=AVEC D(I,J)

AVECTIJ,I)=AVEC(ITJ)
END DO
END DO

IF (IFLAG .EQ. 4) GO TO 901
IF (IFLAG .EQ. 5) GO TO 2558

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Normallze the TEST E1genvectors to mass martix

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE M * TVEC D

C

CALL MULT(DUMI,AMC,TVEC_D,NN,NN,MM)
MATRIX=' DUMI = M * TVEC D'
CALL WRTT(MATRIX,DUMI,NN,MM) -

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUM2 = TVEC_D_T * DUMI = TVEC_D_T * M * TVEC_D

CALL MULT(DUM2,TVEC D T,DUMI,_I,NN,MM)
MATRIX=' DUM2 _ TVEC D T * M * TVEC D'
CALL WRTT(MATRIX,DUM2,MM,MM_

2135

2136

DUMMI=(O.,O.)
DO 2135 I=I,MM

DUMMI = DUMM1 + DUM2(I,I)

CONTINUE

DO 2136 I=I,MM
DUM2(I,I)=DUM2(I,I)/DUMMI

CONTINUE

MATRIX=' TEST KINETIC ENERGY FACTORS'
CALL WRTT(MATRIX,DUM2,MM,MM)
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2150
2140

21?0
2160

DO 2140 I=I,MM
DO 2150 J=I,MM
CFAC(J,J)=(DUM2(J,J))**.5
CONTINUE

CONTINUE

DO 2160 I=I,MM
DO 2110 J=I,NN

TVEC D(J,_)=TVEC D(J,I)/CFAC(I,I)
TVEC_J,I) TVEC(JTI)/CFAC(I,I)
CONTINUE

CONTINUE

DO I=I,NN
DO J=I,MM
TVEC D T(J,I)=TVEC D(I,J)
TVECTIJ,I)=TVEC(ITJ)
END DO
END DO

MATRIX=' NORMALIZED TVEC D'

CALL WRTT(MATRIX,TVECD,NN,MMT
MATRIX=' NORMALIZED TVEC'
CALL WRTT(MATRIX,TVEC,NN,MM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

C DETERMINETHE TRANSPOSEOF AVECMATRIX AND CALL IT AVEC T MATRIX
C DETERMINETHE TRANSPOSEOF TVEC MATRIX AND CALL IT TVEC-T MATRIX

2190
2180

C

C

D02180 I=I,NN
DO 2190 J=l,NM
AVEC T(J,I)=AVEC(I,J)
TVEC_T(J,I)=TVEC(I,J)
CONTINUE
CONTINUE
MATRIX=' AVEC T'
CALL WRTT(MATRIX,AVEC T,MM,NN)
MATRIX=' IVEC T'

CALL WRTT(MATRIX,TVEC_T,MM,NN)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Determine the transpose of AVEC D and call it AVEC D T
C Determine the transpose of TVECD and call It TVECD._T

2210
22O0

C

C

DO 2200 I=I,NN
DO 2210 J=I,MM
AVEC D T(J,I)=AVEC D(I,J)

TVECDZT(J,I)=TVECD(I,J)
CONTINUE

CONTINUE
MATRIX=' AVEC D T '

CALL WRTT(MATRIX,AVEC_D_T,MMTNN)
MATRIX=' TVEC D T'

CALL WRTT(MATRIX,TVEC_DT_MI_,NN)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
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C DETERMINE M * AVEC D

CALL MULT(DUMI,AMC,AVECD,NN,NN,MM)
MATRIX=' DUM1 = M * AVEC D'
CALL WRTT(MATRIX,DUMI,NN,MM) -

C$$$$$$$$$$$$$S$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

C DETERMINE DUM2 = AVEC_D_T * DUMI = AVEC_D_T * M * AVECD

CALL MULT(DUM2,AVEC_D_T,DUMI,MM,NN,MM)
MATRIX=' DUM2 = AVEC D T * M * AVEC D'
CALL WRTT(MATRIX,DUM2,MM,_IM_

C$$$$S$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE K * AVEC

CALL MULT(DUMI,AKC,AVEC,NN,NN,MM)
MATRIX=' DUMI = K * AVEC'
CALL WRTT(MATRIX,DUMI,NN,HM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUM3 = AVEC_T * DUM1 = AVEC_T * K * AVEC

CALL MULT(DUM3,AVEC_T,DUMI,HM,NN,MM)
MATRIX=' DUM3 = AVEC T * K * AVEC'
CALL WRTT(MATRIX,DUM3,MM,Fff_)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE EB = DUM3 - DUM2

202
201

CALL SUBTT(EB,DUM3,DUM2,MM,MM)
MATRIX='EB = AVEC T * K * AVEC - AVEC_D_T * H * AVEC D'
CALL WRTT(MATRIX,[B,MM,MM)
DO 2011=I,MM
DO 202 J=I,MM

EA(J,I)=EB(J,I)/-AW(I,I)
CONTINUE

CONTINUE
MATRIX=' EA = EB / -AW'
CALL WRTT(MATRIX,EA,MM,MM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$S$$$$$
CSSSSSSSSSSS$SSSSS$SSSSSSSS$S$$SS$$SSSSSSSSSSSSSSSS$
C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

C Select a method for solvlng for the C and K matrices.

IF (IDAMP .EQ. I)GO TO 9

IF (ISTIFF .EQ. 1) GO TO 8
IF (ISTIFF .EQ.

X.AND. NN .NE. MM)
TYPE *, 'ERROR,
GO TO 1000
ELSE
ENDIF
IF (ISTIFF .EQ.

X.AND. NN .NE. MM)
TYPE *, 'ERROR,
GO TO 1000
ELSE

0 .AND. IDAMP .EQ. 0
THEN
SELECT IDAMP OR ISTIFF METHOD'

I .AND. IDAHP .EQ. 1
THEN
SELECT ONLY IDAMP OR ISTIFF METHOD'
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ENDIF
IF(NN .NE. MH) GO TO 1000

cSSSSSS$$SSSSSSSS$$SSSS$SSSSSSSSSS$SSS$S$$SSSSSSSS$$
cSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS$$SSSSSSSS$
cSSSSSSSSS$SSSSSSSSSSSSSSSSSSSSSSSS$$$$SSSSS$$$$SSSS
cSSSSSSSS$SSSSSSSSSSSSSSS$SSSSSSSS$$SSSSSSSSSSSSSSS$
cSS$$SSS$ S$$SSSSS$
cSSSSSSS$ SSSSSSSSS
C$$$$$$$$ O|rect Method $$$$$5555
c1$$S$$$5 $$S5$$5$5
c5$$$$$55 $$$55$$$$
c$$S$$$$5$$$5$$$$$5$$$5$$$$$$$$$$$$55$$$$$$$$$5$$$$$
c$$5$$$$$$$555$$$$$$$$5$$$$$$$$$$$$$$$S$$$$$555$$$$$
c$SSSSSS$SSSS$SSSSSSSSSS$SSSSSSSSSS$$$SSSSSSSSSSSSS$
CSSSS$SSSSSSSSSS$SSSSSSSSS$$SS$$$$$$$$$$$$S$$$$$$$$$

C If the AVECmatirx ls not square, the following section Is
C skipped, since the true lnverse of AVEC and AVEC_T can not
C be obtatned tn the fo]|owtng section.

CSSSS$SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS$$SSS$SS$$$
C Detemfne DUMI = H * AVEC D

CALL ZER(DUHZ.NN,NN)
CALL ZER(DUH2,NN,NN)
CALL ZER(DUH3,NN,NN)
CALL ZER(DUM4,NN,NN)
CALL ZER(DUH5,NN,NN)
CALL ZER(DUH6,NN,NN)
CALL ZER(DUNT,NN,NN)

CALL HLILT(DUHZ,AHC.AVECD, NN,NN,MH)
MATRIX=' DUH1 = M * AVEC_D'
CALL WRTT(MATRIX,DUN1,NN,MH)

CSSSSSSSSSSSSSS$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Determine DUM2 = AVEC_T * DUN1 • AVEC_T * M * AVEC_D

CALL MULT(DUH2,AVEC T,DUM1,MH,NN,MM!
MATRIX=' DUH2 = AVEC T _ M * AVEC...D
CALL WRTT(MATRZX,DUM_,MH,MH)

CSSS$SSSSSSSS$SSSS$SSSSSSSSSSSSSSSSS$SS$SSSSSSSSSSS$
C Determine DUM1 = H * AVEC

CALL MULT(DUM1,AHC,AVEC,NN,NN,HM)
MATRIX=' DUN1 = M * AVEC'
CALL WRTT(MATRIX,DUNI,NN,MH)

CSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS$SSSSSSSSSSSSSSSS
C Determine DUM3 = AVEC D T * DUM1 = AVEC D T * M * AVEC

m _ _ _

CALL MULT(DUH3,AVEC D T,DUM1,HN, NN,H4)
MATRIX=' DUH3 • AVECD T * M * AVEC'
CALL WRTT(HATR]X,DUH3,_I,MH)

_$$$SSSSSSSSSSSSSSSSS$SSS$$SSSS$$$$$$$$$$$$$$$$$$$$
C DETERMINE AVEC T*C*AVEC=EA-DUM2-DUM3

D
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CALL ADD(DUMI,DUM2,DUM3,MM,MM)
CALL SUBTT(DUM2,EA,DUM1,MM,MM)
MATRIX=' DUM2 : AVEC T*C*AVEC'
CALL WRTT(MATRIX,DUM2,MM,MM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Determine the C matrix

DO 250 I=I,NN
DO 251J=I,MM
DUM6(I,J)=AVEC(I,J)
DUM7(J,I)=AVEC_T(d,I)

251 CONTINUE
250 CONTINUE

C Determine the inverse of AVEC matrix, and post multiply
C it by AVEC_T*C*AVEC

CALL MATINVC(DUM6,DUM3,MN,NR)
CALL MULT(DUM1,DUM2,DUM3,NN,NN,NN)

C Determine the inverse of AVEC_T matrix, and pr_ multiply

C it by AVECT*C*AVEC*AVEC**-I to obtain the C matrix.

CALL MATINVC(DUM7,DUM4,NN,NR) .
CALL MULT(DUM5,DUM4,DUMI,NN,NN,NN)

MATRIX=' C HATIRX IS = '
CALL WRTT(MATRIX,DUM5,NN,NN)

C If the eigenvector matrix is square, there will be no
C no need for optimization techniques.

IF(NN .EQ. MM) GO TO 1000

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C$$$$$$$$ $$$$$$$$$
C$$$$$$$$ $$$$$$$$$
655555555 STIFFNESS CORRECTION $$$$$$$$$
C$$$$$$$$ $$$$$$$$$
C$$$$$$$$ $$$$$$$$$
C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

cgO0
cgo0

IF(ISTIFF .NE. I) GO TO 8
IF(ISTIFF .EQ. I) GO TO 8

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

C Initialize the dummy matrices.

CALL ZER(DUMI,NN,NN)
CALL ZER(DUM2,NN,NN)
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CALL ZER(OUN3,NN,NN)
CALL ZER(DUN4,NN,NN)
CALL ZER(OUH5,NN,NN)
CALL ZER(DUH6,NN,NN)
CALL ZER(DUM7,NN,NN)
CALL ZER(DUH8,NN,NN)

C$$$$$S$$$S$$$$$$$$$$$$$$$$$$S$$$$$$$$$S$$$$$$$$$$$$
C DETERMINE DUH1 = M * TVEC D

m

CALL NULT(DUNloAHC,TVEC_DoNN,NN,MM)
MATRIX=' DUMI = N * TVEC D'
CALL WRTT(HATRIX,DUH1,NN,HH) -

C$$$$$$S$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUN2 • TVEC D T * DUN1 • TVEC D T * H * TVEC D

_ _ o m m

C

CALL HULT(DUN2,TVEC D T,DUH1,HM,NN,HH)
MATRIX=' I)UH2 =-"'TVEC D T * H * TVEC_D'
CALL WRTT(HATRIX, DUN2,14H,_IH_

CSSSSS$SSS$$$S$$S$SS$S$$$$$$$$S$SS$S$SS$S$SSS$SS$$$$
C DETE_INE DUN3 - EB + DUN1 • EB + TVEC 0 T * M * TVEC D

CALL ADO(I)UH3, EB, DUN2 oMM,MM,HM)
MATRIX=' I)UH3 = EB + TVEC D T * N * TVEC D'
CALL WRTT(HATRIX,DUM3,1_4,HH) - -

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERNINE DUN4 = 1./DUN3 = (EB + TVEC_D_T * M * TVEC_D)**-I

CALL HATINVC(DUM3,OUH4,HM,NR)
MATRIX=' DUN4 = (EB + TVEC D T * H * TVEC_.D)**-I'
CALL WRTT(HATRIX,DUH4,HH,HHT-

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUN5 = DUM4*TVEC T =

C ((EB + TVEC..D..T * H * TVEC_D)**-I)TVEC_T

CALL NULT(DUMS,DUM4,TVEC,MM,HH,NN)
HATRIX='DUNS=((EB + TVEC D T * H * TVEC_D)**-I)TVEC_T'
CALL WRTT(HATRIX,OUHS°HMTNN)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE (K*)**-] = DUN6 = TVEC*DUH5 =

C TVEC((EB + TVEC_D_T * H * TVEC_O)**-I)TVEC_.T

CALL NULT(DUM6,TVEC,DUNS,NN,MH,NN)
MATRIX='(K*)**-]=TVEC((EB + TVEC D T * M * TVEC_D)**-Z)TVEC T'
CALL WRTT(HATRIX,DUH6,NN,NN) - -

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Determine the inverse of K matrix. DUH2=(K)**-I

DO2700 I=I,NN
DO 2701J-1,NN

DUMI(I,J)-AKC(I,J)
2701 CONTINUE
2700 CONTINUE
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CALL MATINVC(DUMI,DUM2,NN,HR)
MATRIX=' DUM2 = (K)**-]'
CALL WRTT(MATRIX,DUM2,NN,NN)

c$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Determine DUN4 = DUM2 - DUM6 = ((K)**-I) - ((K*)**-I)

CALL SUBTT(DUM4,DUM2,DUM6,NN,NN)
MATRIX=' DUM4 = ((I()**-I)- ((K*)**-I)'

C CALL WRTT(MATRIX,DUM4,NN,NN)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Determine DUM5 = DUN4 * K - (((K)**-l) - ((K*)**-I))K

CALL NULT(DUM5,I)UM4,AKC,NN,NN,NN)
MATRIX=' DUM4 = (((K)**-I)- ((K*)**-I)K'

C CALL WRTT(MATRIX,DUH5,NN,NN)

c$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Determine DUM6 = K * DUM5 = K(((K)**-I) - ((K*)**-I))K

CALL MULT(DUM6,AKC,DUH5,NN,NN,NN)
CALL SUBTT(DUM7,AKC,DUM4,NN,NN)
MATRIX=' DUMA - K(((K)**-I) - ((K*)**-I))K'
CALL WRTT(MATRIX,DUM6,NN,NN)
MATRIX--' DUMI = ERROR MATRIX'

CALL WRTT(MATRIX,DUM7,NN,NN)

C If tdamp ts not 1, then correction of damping Is not
C dest red.

IF(IDAMP .NE. I) GO TO 8

c$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
c$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
c$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
c$$$$$$$$ $$$$$$$$$
C$$$$$$$$ DAMPING CORRECTION $$$$$$$$$
C$$$$$$$$ Mass Optimlzatlon Method $$$$$$$$$
c$$$$$$$$ $$$$$$$$$
c$$$$$$$$ $$$$$$$$$
c$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
c$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$SS$$$$$$$$$$$$$$$$$$$
c$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

c$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

C Initialize the dummy matrices.

CALL ZER(DUMI,NN,NN)
CALL ZER(DUM2,NN,NN)
CALL ZER(DUM3,NN,NN)
CALL ZER(DUM4,NN,NN)
CALL ZER(DUM5,NN,NN)
CALL ZER(DUM6,NN,NN)
CALL ZER(DUMT,NN,NN)
CALL ZER(DUM8,NN,NN)
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CALL ZER(DUM9,NN,NN)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE M * TVEC D

CALL MULT(DUMI,AMC,TVEC D,NN,NN,MM)
MATRIX=' DUMI = M _ TVEC D'

CALL WRTT(MATRIX,DUMI,NN,MM) -

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUM2 = TVEC_D_T * DI_41= TVEC_DT * M * TVEC_D

CALL HULT(DUH2,TVECD_T,DUM1,MM,NN,MM)
MATRIX=' DUM2 _ TVEC D T * M * TVEC_D'
CALL WRTT(MATRIX,DUM2,MM,gMT

c$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE K * TVEC

CALL HULT(DUM1,AKC,TVEC,NN,NN,MM)
MATRIX=' DUM1= K * TVEC'
CALL WRTT(MATRIX,DUNI,NN,RM)

C$S$S$SSSS$S$SS$SSSSSS$SSSS$$SS$S$S$$SS$SSS$$$$SSS$$
C DETERMINEDUM3 = TVEC_T * DUM] = TVEC_T * K * TVEC

C

CALL MULT(DUM3,TVEC_T,DUMI,HM,NN,MM)
MATRIX=' DUM3 = TVEC T * K * TVEC'
CALL WRTT(MATRIX,DUM3,HM,MM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINETB - DUM3- OlJM2

CALL $UBTT(TB,DUM3,DUN2,MM,MM)
MATRIX='TB = TVEC T * K * TVEC - TVEC D T * M * TVEC D'
CALL WRTT(MATRIX,rB,MH,MM) - - -

CSSSS$$$SS$$SSS$$S$$SSS$SS$SSSSSSS$S$$SSSSS$SS$S$$$$
C DETERMINE TA = TB / -TW

DO 205 I=I,MM
DO 206 J=I,RM

TA(J,I)=TB(J,I)/-TW(I,I)
206 CONTINUE
205 CONTINUE

MATRIX=' TA = TB / -TW'
CALL WRTT(.MATRIX,TA,MM,MM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

C Calculate the mess inside the paranteses

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Determine DUM1 = M * TVEC_D

CALL ZER(DLIMI,NN,NN)
CALL ZER(DUM2,NN,NN)
CALL ZER(DUM3,NN,NN)
CALL ZER(DUM4,NN,NN)
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CALL MULT(DUMI,AMC,TVECD,NN,NN,MM)
MATRIX=' DUMI = M * TVEC_D'

C CALL WRTT(MATRIX,DUM1,NN,MM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Determine DUM2 = TVEC T * DUMI = TVEC T * M * TVEC D

CALL MULT(DUM2,TVEC_T,DUMI,Mid,NN,MM)
MATRIX=' DUM2 = TVEC T * M * TVEC D'

C CALL WRTT(MATRIX,DUM2,MM,MM) -

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Determine DUMI = M * TVEC

CALL MULT(DUM1,AMC,TVEC,NN,NN,MM)
MATRIX=' DUMI = N * TVEC'

C CALL WRTT(MATRIX,DUMI,NN,I_4)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Determine DUM3 = TVEC D T * DUMI = TVEC D T * M * TVEC

CALL HULT(DUM3,TVEC_D_T,DUMI,HM,NN,MM)
MATRIX=' DUM3 = TVEC D T * M * TVEC'

C CALL WRTT(MATRIX,DU_,FI_,NH)

c$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Determine DUHZ = C * TVEC

CALL MULT(DUHZ,ACC,TVEC,NN,NN,MH)
MATRIX=' DUN1 = C * TVEC'

C CALL WRTT(MATRIX,DUM1,NN,MM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Determine DUM4 = TVEC T * DUM1 - TVEC T * C * TVEC

CALL MULT(DUM4,TVEC_T,DUMI,MM,NN,MM)
MATRIX=' DUM4 = TVEC T * C * TVEC'

C CALL WRTT(MATRIX,DU_,MM,MH)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUMI = TVEC D T*M*TVEC T -
C TVECT-* M * TVEC_D_T

CALL ADD(DUMI,DUM2,DUM3,MM,F_I)
C MATRIX=' TVEC D T*M*TVEC T-TVEC T*M*TVEC D T'
C CALL WRTT(MAT_IX,DUMI,HMTMM) - - -

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUM5 = TVEC D T*M*TVEC T -
C TVEC-T-* M * TVEC_D_T -
C TVEC-T * C * TVEC

CALL ADD(DUM5,DUMI,DUM4,MM,MM)
C MATRIX=' TVEC_D_T*M*TVEC_T-TVEC_T*M*TVEC_D_T-
C XTVEC T*C*TVEC
C CALl WRTT(MATRIX,DUM5,MM,MM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUMI = TVEC D T * M * TVEC T -
C TVEC_T- * M * TVECD_T -
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C
c

TVEC T * C * TVEC
u

TA

CALL SUBTT(DUMI,DUM5,TAoHM,MM)
MATRIX=' THE MESS INSIDE OF THE PARANTESIS'
CALL WRTT(MATRIX°DUMI°NN,I_4)

C DUMgmatrix, later on, will be used for optimization based on
C stiffness matrix.

DO 207 I=I,MM
DO 208 J=I,MM
DUMg(I,J)=DLIMI(I,J)

208 CONTINUE
207 CONTINUE

CSSS$$$$$$$$$$SSSSSSSS$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUM! = TA - EA
C

C CALL SUBTT(DUMI,TA,EA,NM,MM)
C MATRIX=' (TA - F_A)'
C CALL WRTT(MATRIX,DUMI,NN,NN)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Determine DUM2 = M * TVEC

C

CALL HULT(D(R4?,AMC,TVEC,NN,NN,t414)
NATRIX=' DUM2 - M * TVEC'
CALL WRTT(MATRIX,DUg2,NN,MM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Determine DUN7 - TVEC,._T* N

CALL HULT(DUM7,TVEC_T,ANC,1414,NN,NN)
MATRIX=' DUN1 - TVEC T * N'
CALL WRTT(MATRIX,I)UMT,NN,MM)-

C$$$$S$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Determine DUM3= TVEC T * DU142= TVEC T * M * TVEC

C

CALL MULT(DUM3,TVEC T,DUM2,NM,NN,HM)
MATRIX=' DUH3 - TVEC T * M * TVEC'
CALL WRTT(MATRIX,DUM3,HM,I_4)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Determine DUM4 = (TVEC_T * M * TVEC)**°I

DO 258 I=I,MM
DO 259 j=I,MH

DUM6(I,J)=DUM3(I,J)
259 CONTINUE
258 CONTINUE

C

CALL MATINVC(DUH3,DUI44,MH,NR)
MATRIX=' DUM4 = (TVEC T * g * TVEC)**-I'
CALL WRTT(MATRIX,OUM4T_,MM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Determine DUM5=DUMI*DUH4-(mess)*(TVEC_T*M*TVEC)**-I
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CALLMULT(DUMS,DUMI,DUM4,MM,MM,MM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Determine DUM6=DUM4*DUM5

C DUM6=((TVEC_T*M*TVEC)**-I)*(mess)*(TVEC_T*M*TVEC)**-I

CALL MULT(DUM6,DUM4,DUM5,MM,MM,MM)

C$$$$$$$$$$$$$$$$$$$$$S$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Determine DUMS=DUM6*DUM7

C DUMB=((TVEC_T*M*TVEC)**-I)*(mess)*((TVECT*N*TVEC)**-I)*TVECT*M

CALL MULT(DUM8,DUM6,DUM7,MM,MM,NN)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Determine DUM6=DUM2*DUM8
C DUM6=M*TVEC*

C ((TVEC T*M*TVEC)**-I)*
c (mess);
C ((TVEC_T*M*TVEC)**-I)*
C TVEC T*M

CALL MULT(DUM6,DUM2,DUM8,NN,HM,NN)
MATRIX=' MASS OPT. DELTA C'

CALL WRTT(MATRIX,DUM6,NN,NN)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Determine the new C matrices.

307
306

D0306 I=I,NN
DO 307 J=I,NN
DUMI(I,J)fACC(I,J)
ACORG(I,J)=ACC(I,J)
DUM2(I,J)=(O.,O.)
DUMM=REAL(DUM6(I,J))
DUM2(I,J)=CMPLX(DUMM,O.)
CONTINUE

CONTINUE

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C If Iflag is 4 then the new eigenproblem with the new
C C matrix is solved.

IFLAG ; 4

C The strategy will be that one time delta C will be added,
C and one time it will be subtracted from the C matrix.

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Add the delta C to C matrix and solve eigenproblem.

gOl
C

IFI = 901

IF(IFI .GT. 901)G0 TO 902
CALL ADD(DUM3,DUMI,DUM6,NN,NN)
CALL SUBTT(DUM3,DUMI,DUM6,NN,NN)
MATRIX=' DELTA C ADDED TO THE C MATRIX,
CALL WRTT(MATRIX,DUM3,NN,NN)
DO 303 I=I,NN

NEW C'
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DO 304 J=I,NN
ACC(1, J) =DUM3( I, J)
AC(I,J)=DUM3(I,J)

304 CONTINUE
303 CONTINUE

IFI = IFI + I

IF(IFLAG .EQ. 4) GO TO 5

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Add the delta C to C matrix and solve eigenproblem.

902

CALL ZER(DUM3,N,N)
CALL ZER(ACC,N,N)
CALL ZER(AC,N,N)
IF(IFI .GE. 903) GO TO 903

C DETERMINE THE ORTHOGONALITY CONDITION.

C$S$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DU141= M * AVEC D

CALL MULT(DUM1,AMC,AVECD,NN, NN,HM)
MATRIX=' DUH1 = 14; AVEC D'

C CALL WRTT(MATRIX,DUHI,NN,NH) -

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUM2 ,.AVEC D T * DUM1 = AVEC D T * M * AVEC D

CALL MULT(DUH2,AVEC_D_T,DUM1,MM,NN,MH)
MATRIX=' DUI42 - AVECD l * M * AVEC._D'

C CALL WRTT(MATRIX, DI.IH2,RM,_IM')"

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUMI = K * AVEC

CALL MULT(DUMI,AKC,AVEC,NN,NN,MM)
MATRIX=' DUHI = K * AVEC'

C CALL WRTT(MATRIX,DUH1,NN,I_4)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUVA = AVEC T * DUM1 = AVEC T * K * AVEC

CALL MULT(DUM4,AVEC_T,DUMI,MM,NN,MM)
MATRIX=' DUM4 = AVEC T * K * AVEC'

C CALL WRTT(MATRIX,DUM4,MM,_IM)

c$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE EB = DUM4 - DUM2

CALL SUBTT(EB,DUM4,DUM2,MM,MM)
MATRIX='EB = AVEC T * K * AVEC - AVEC...D_T* M * AVEC_D'
CALL WRTT(MATRIX,[B,MM,MH)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUHI - M * TVEC O

CALL MULT(DUMI,AHC,TVEC_D,NN,NN,MM)
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MATRIX=' DUM1 = M * TVEC D'

CALL WRTT(MATRIX,DUMI,NN,MM) -

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUM2 = TVEC D T * DUM1 = TVEC D T * M * TVEC D

CALL MULT(DUM2,TVEC_D_T,DUMI,MM,NN,MM)
MATRIX=' DUM2 = TVEC D T * M * TVEC D'
CALL WRTT(MATRIX,DUM2,MM,MM_

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUM1 = K * TVEC

CALL MULT(DUMI,AKC,TVEC,NN,NN,MM)
MATRIX=' DUMI = K * TVEC'

CALL WRTT(MATRIX,DUMI,NN,MM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUM4 = TVEC T * DUMI = TVEC T * K * TVEC

w

C

CALL MULT(DUM4,TVECT,DUM1,MM,NN,MM)
MATRIX=' DUM4 = TVEC T * K * TVEC'
CALL WRTT(MATRIX,DUM4,NM,MM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE TB = DUM4 - DIJM2

CALL SUBTT(TB,DUM4,DUM2,MM,MM)
MATRIX='TB = TVEC T * K * TVEC - TVEC D T * M * TVEC D'
CALL WRTT(MATRIX,TB,MM,MM) - - -

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUMI = M * AVEC D

CALL MULT(DUMI,AMC,AVEC_D,NN,NN,MM)
MATRIX=' DUMI - M * AVEC D'
CALL WRTT(MATRIX,DUMI,NN,MM) -

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUM2 = AVEC T * DUMI _ AVEC T * M * AVEC D

CALL MULT(DUM2,AVEC_T,DUMI,MM,NN,MM)
MATRIX=' DUM2 = AVEC T * M * AVEC D'
CALL WRTT(MATRIX,DUM2,MM,MM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUMI = M * AVEC

CALL MULT(DUMI,AMC,AVEC,NN,NN,MM)
MATRIX=' DUM1 = M * AVEC'
CALL WRTT(MATRIX,DUMI,NN,MM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUM4 = AVEC_D_T * DUM1 = AVEC_D._T* M * AVEC

CALL MULT(DUM4,AVEC_D_T,DUMI,MM,NN,MM)
MATRIX=' DUM4 = AVEC D T * M * AVEC'
CALL WRTT(MATRIX,DUVA,MM,FhM_

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
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C DETERMINEDUM5 = DUM2+ DUM4=
C AVECT * M * AVECD + AVEC D T '_ M * AVEC

CALL ADD(DUM5,DUM2,DUM4,MM,MM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUMI = C * AVEC

CALL MULT(DUM1,DUM3,AVEC,NN,NN,NM)
MATRIX=' DUMI = C * AVEC'
CALL WRTT(MATRIX,DUMI,NN,HM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUM4 = AVEC_T * DUM1 = AVEC T * C * AVEC

CALL MULT(DUMA,AVEC_T,DUMI,NM,NN,I_)
NMRIX=' DL_ = AVEC I * C * AVEC'
CALL WRTT(MATRIX,DUM4,NH,_IM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINEEA = DUN4 + DUN5

800

CALL ADD(EA,DUMA,DUH2,MM,MM)
WRITE(2,800)
FORMAT(1X,'ORTHO BASED ON IMPROVED MATRICES AND VECTORS')
MATRIX='EA=AVEC D T*C*AVEC+AVEC_D_T*M*AVECD+AVEC T*M*AVEC D T'
CALLWRTT(MATRIX,F.A,MM,NM) ....

CSS$$S$$SS$$$$$$$$$$$$$$$$$$S$$$$$$$$$$$$$$$$$S$$$$$
C DETERMINE DUMI = M * TVEC D

C

CALL HULT(DUMI,AHC,TVEC._D,NN,NN,MM)
MATRIX-' DUHI - M * TVEC D'

CALL WRTT(MATRIX,DUMI,NN,HM) -

C$$$$$$$$$$$$$$S$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUM2 = TVEC T * DUMI = TVEC T * M * TVEC D

CALL MULT(DUM2,TVEC..T,DUMI,MM,NN,MM)
MATRIX=' ' DUM2 = TVEC T * M * TVECD'
CALL WRTT(MATRIX,DUH2,MH,FIM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUHI = M * TVEC

CALL MULT(DUMI,AMC,TVEC,NN,NN,MH)
MATRIX=' DUMI = M * TVEC'
CALL WRTT(MATRIX,DUMI,NN,MM)

C$$$$$$$$$S$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUM4 = TVEC_D_T * DUMI = TVEC_D_T " M * TVEC

CALL MULT(DUM4,TVEC D T,DUMI,MM,NN,MM)
MATRIX=' DUM4 ; TVEC D T * M * TVEC'
CALL WRTT(MATRIX,DUM4,MM,RM_

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUM5 = DUH2 + DUM4 =

C TVEC_T * M * TVEC_D + TVEC._D._T* M * TVEC
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CALL ADD(DUM5,DUM2,DUM4,MM,MM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUM1 = C * TVEC

C

CALL MULT(DUMI,DUM3,TVEC,NN,NN,MM)
MATRIX=' DUMI = C * TVEC'

CALL WRTT(MATRIX,DUMI,NN,MM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUM4 = TVEC T * DUMI = TVEC T * C * TVEC

C

CALL MULT(DUM4,TVEC_T,DUMI,MM,NN,MM)
MATRIX=' DUM4 = TVEC T * C * TVEC'

CALL WRTT(MATRIX,DUM4,MM,_IM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE TA = DUMA + DUM5

CALL ADD(TA,DUM4,1_,MM,MM)

WRITE(2,801)
801 FORMAT(IX,'ORTHO BASED ON TEST VECTORS AND IMPROVED MATRICES')

MATRIX='TA=TVEC D T*C*TVEC+TVEC._D..T*M*TVEC_D+TVEC T*M*TVEC D T'
CALL WRTT(MATRIX,TA,MM,MM) - - -

c$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUMI = M * TVEC D

m

CALL MULT(DUMI,AMC,TVEC_D,NN,NN,MM)
MATRIX=' DUMI " M * TVEC D'

CALL WRTT(MATRIX,DUMI,NN,MH) -

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUM2 = TVEC_T * DUM1 = TVEC_T * H * TVEC_D

CALL MULT(DUMZ,TVEC_T,DUMI,NM,NN,MM)
MATRIX=' DUM2 = TVEC T * M * TVEC D'
CALL WRTT(MATRIX,DUM2,MM,_tM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUMI = M * TVEC

CALL MULT(DUMI,AMC,TVEC,NN,NN,MM)
MATRIX=' DUMI = M * TVEC'

CALL WRTT(MATRIX,DUMI,NN,MM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUM4 = TVEC D T * DUMI = TVEC D T * M * TVEC

CALL MULT(DUM4,TVEC_D_.T,DUMI,MM,NN,HH)
MATRIX=' DUM4 = TVEC D T * M * TVEC'
CALL WRTT(MATRIX,DUM4,MH,_IHT

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUM5 = DUM2 + DUM4 =

C TVEC_T * M * TVEC_D + TVEC_D_T * H * TVEC

CALL ADD(DUMS,DUM2,DUM4,MM,MM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUMI = C * TVEC
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CALL MULT(DUMI,ACORG,TVEC,NN,NN,MM)
MATRIX=' DUMI = C * TVEC'
CALL WRTT(MATRIX,DUMI,NN,MM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUM4 = TVEC T * DUM1 = TVEC T * C * TVEC

m

CALL MULT(DUM4,TVEC T,DUMI,MM,NN,MH)
MATRIX=' OUM4 ; TVEC T * C * TVEC'

CALL WRTT(MATRIX,DUN4,NH,FIH)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE TA = DUM4 + DUM5

802

C
C
C
C
C
C
C

CALL ADD (TA,DUM4,DUM2,NH,NH)
WRITE(Z,802)
FORMAT(IX, 'ORTHOBASEDON TEST VECTORSAND ANALYTICALMATRICES')
MATRIX='TA=TVEC D T*C*TVEC÷TVEC_.D_T*M*TVECD+TVECT*M*TVEC D T'
CALL WRTT(MATRIX,'rA,MH,MM) ....
DO I-l,l_l

DO J=I,MM
EA(J,I)-EB(J,I)/-AW(I,I)

ENDDO
ENDDO
MATRIX=' EA = EB / -AW'

CALL WRTT(MATRIX,EA,HN,MM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

302
301

CALL ADD(DUN3,DUMI,DUI_,NN,NN)
CALL SUBTT(DUH3,DUMI,DUMZ,NN,NN)
MATRIX=' REAL PART OF DELTAC ADDEDTO THE C MATRIX, NEWC'
CALL WRTT(MATRIX,DUM3,NN,NN)
DO 3011=I,NN

DO 302 J-I,NN
ACC(I,a)-DUH3(I,O)
AC(I,J)-DUH3(I,J)
IF(ACORG(I,J) .EQ. (O.,O.)) ACC{I,J)=(O.,O.)
IF(ACORG(I,J) .EQ. (0.,0.)) AC(I,J)=(O.,O.)

CONTINUE
CONTINUE
MATRIX='REAL PART OF DELTA C ADDED TO THE C MATRIX, ACC'
CALL WRTT(MATRIX,ACC,NN,NN)

IFI = IFI + I
IF(IFLAG.EQ.4) GO TO S

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C$$$$$$$$ $$$$$$$$$
C$$$$$$$$ DAMPING CORRECTION $$$$$$$$$
C$$$$$$$$ Stiffness Optimization Method $$$$$$$$$
C$$$$$$$$ $$$$$$$$$
C$$$$$$$$ $$$$$$$$$
C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
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C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

C$$$$$$$S$$$$$$$$$$$$$S$$$S$$$S$$SS$$$S$$$$$S$$$$$$$

C Initialize the dummy matrices.

CALL ZER(DUH1,NN,NN)
CALL ZER(DUM2,NN,NN)
CALL ZER(DUM3,NN,NN)
CALL ZER(DUM4.NN,NN)
CALL ZER(DUM5,NN,NN)
CALL ZER(DUN6,NNoNN)
CALL ZER(DUH7,NN,NN)
CALL ZER(DUH8,NN,NN)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Determine DUM2 = K * TVEC

903

C

CALL MULT(DUM2,AKC,TVEC,NN,NN,MM)
MATRIX=' DUM2 = K * TVEC'

CALL WRTT(MATRIX,DUM2,NN,MM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Determine DUM7 = TVEC T * K

C

CALL MULT(DUM/,TVEC_T,AKC,MM,NN,NN)
MATRIX=' DUM7 = TVEC T * K'

CALL WRTT(MATRIX,DUH7,NN,MM)-

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

C Determine DUN3 = TVECT * DUM2 = TVEC_I * K * TVEC

CALL MULT(DUH3,TVEC_T,DUH2,HM,NN,MM)
MATRIX-' DUM3 = TVEC T * K * TVEC'

CALL WRTT(MATRIX,DUM3,MH,MH)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Determine DUN4 = {TVEC_T * K * TVEC)**-I

DO 260 I=I,MM

DO 261J=I,MM
DUM6(I,J)=DUM3(I,J)

261 CONTINUE

260 CONTINUE

CALL MATINVC(DUM3,DUM4,MM,NR)

MATRIX=' DUM4 = (TVEC T * K * TVEC)**-I'
CALL WRTT(MATRIX,DUM4_MM,MM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

C Determine DUM5=DUM9*DUM4=(mess)*(TVEC_T*K*TVEC)**-I

CALL MULT(DUM5,DUM9,DUM4.,I,_I,MM,MM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Determine DUM6=DUM4*DUM5

C DUM6=((TVEC_T*K*TVEC)**-I)*(mess)*(TVEC_T*K*TVEC)**-I
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CALL NULT(DUH6,DUN4,DUNS,MH,NM,MM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Determine DUM8=DUM6*DUM?
C DUM8=( (TVEC_T*K*TVEC)**-I)* (mess) * ( (TVEC_T*K*TVEC)**-I)*TVEC_T*K

CALL MULT(DUN8,DUM6,DUH7,HM,MM,NN)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Determine DUH6=DUHZ*DUM8
C DUM6=K*TVEC*
C ((TVEC T*K*TVEC)**-I)*
c (mess);
C ( (TVEC_T*K*TVEC)**-1)*
C TVEC T*K

CALL MULT(DUN6,DUMZ,DUM8,NN,MM,NN)
MATRIX=' STIFFNESS OPT. DELTAC'
CALL WRTT(HATRIX, DUM6,NN,NN)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Determine the new C matrices.

263
262

DO 262 I-I,NN
DO 263 J=I,NN
I)UMI(I,J)=ACORG(I,J)

ACC(I, J) =ACORG(I: J)OU_.(Z,J) (o.,o.)
DUHN=REAL(DUN6( I, J ) )
DUN2(I,J) =CMPLX(DU_,O.)

CONTINUE
CONTINUE

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Subtract the delta C from C matrix and solve etgenproblem.

210
209

IF(IF1 .GE. 904) GO TO 1000
CALL SUBTT(DUM3,DUH1,DUM6,NN,NN)
MATRIX-' DELTAC BASEDON STIFFNESS'
CALL WRTT(HATRIX,DUM3,NN,NN)
DO 209 I=I,NN

DO 210 J=I,NN
ACC(I,J)=DUM3(I,J)
AC(I,J)=DUM3(I,J)

CONTINUE
CONTINUE
IF1 = IF1 + 1
IF(IFLAG .EQ. 4) GO TO 5

c$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
c$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
c$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
c$$$$$$$$ $$$$$$$$$
C$$$$$$$$ STIFFNESS AND DAMPING CORRECTION $$$$$$$$$
C$$$$$$$$ Optimization Method $$$$$$$$$
c$$$$$$$$ $$$$$$$$$
C$$$$$$$$
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$$$$$$$$$
C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

C Initialize the dummy matrices.

8 CALL ZER(DUHZ,NN,NN)
CALL ZER(DUMZ,NN,NN)
CALL ZER(DUM3,NN,NN)
CALLZER(DUN4,NN,NN)
CALLZER(DUMS,NN,NN)
CALL ZER(DUM6,NN,NN)
CALL ZER(DUM7,NN,NN)
CALL ZER(DUMS,NN°NN)
CALL ZER(DUM9,NN,NN)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE THE WEIGHING FACTOR

C The weiging factor Is DUM14=N*M

DO 2448 I=I,NN
DO 2449 J=I,NN
DUMI4(I,J)=AMC(I,J)*AMC(I,J)

C DUMI4(I,J)=AMC(I,J)
2449 CONTINUE
2448 CONTINUE

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Determine the TVEC/TW

DO 25511=I,MM
DO 2552 J=I,NN
DUMI8(J,I)*TVEC(J,I)/TW(I,I)

2552 CONTINUE
2551 CONTINUE

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Determine DUMI = K * DUM18 _ K * TEVEC_PT

CALL MULT(DUMI,AKC,DUM18,NN,NN,MH)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Determine DUM2 = TVEC T * DUM1 = TVEC T * K * TVEC PT

CALL MULT(DUM2,TVEC_T,DUMI,MM,NN,MM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Determine DUMI = M * TVEC D

CALL MULT(DUMI,AMC,TVEC_D,NN,NN,MM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Determine DUM3 = TVEC_T * DUM1 = TVEC_T * M * TVEC__D

CALL MULT(DUM3,TVEC_T,DUMI,MM,NN,MM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
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C Determine DUNIO = TVEC T * 14"'2

CALL 14ULT(DUH] O, TVEC_T, DUN]4, NM, NN, NN)

CISSSSSSISSSSSSSS$SSSSS$SS$SS$S$SSISSSSISSSSSSSS$$S$
C Determine DUNll = 14"'2 * TVECT

IICALL 14ULT(DUNlI, DUH14, TVEC,NN,NN,I_4)

CS$$SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS$SSSSSSS
C Determine DUNI = M * TVEC Pl.

CALL 14ULl.(DUN1, AHC, DUH18, NN, NN, 1/_)

CSSSSSSSS$SSS$S$S$$SSSS$$$$SSS$S$SSSSSS$$ZSSSSSSSSS$
C Detenmtne DUNS - TVEC T * DUN1 - TVEC I. * M * TVEC PT

CALL HOLT (DUNS, TVEC_T,DUNI ,NN,NN ,t4H)

CSSSSSSSSSSS$$SSS$$SSSSSSSSSSZSZSSSSSSS$$S$$SSS$$$$$
C Detenmtne DUN12 = DUH5**-I = (TVEC_T * H * TVEC_PI.)**-I

CALL NATINVC (DUN5,DUN1Z,14N,I_)

CSSSSSSS$$$S$$SS$$SS$$$SSSS$$$$SS$$SSSSSSSSSS$SS$$SS
C Determine DUN16 = (TVEC T * 14* TVEC_PT)**-I * TVEV_T * 14"'2

CALL HOLT(DUM16, DUN12 °DUHIO,MN, MH, NN)

CSSSSSSS$$$SSSS$S$$$S$$SSSSS$S$SSSS$SS$$S$$SSSSSSSS$
C Deterltne DUNI7 = 14"2 * TVEC *(TVEC_T * M * TVEC_PT)**-!

CALL 14ULT(DLR417, DUN11 °DUM12. NN,14N,MN)

CSSSSSSSSSSSSSSSS$$S$$SSSSSSSSSSSSSSSSSSSS$$$$$$$$$$
C Determine DUNS = DUM2 + DUN3 =

C (TVEC_T * K * TVEC) + (l.YECl. * 14 * TVEC_D)

CALL ADD(DUHS, DUH2, DUH3oHI4, t414)

CSSSSSSSSSSSSS$$SSSSSSS$SS$SSS$S$SSS$S$SSSSS$$$S$$$S
C Determine DUH6 = DUH5 * DUN16 =

C ((TVEC T * K * TVEC) + (TVEC T * t4 * TVEC D))*
C (TYEC_T * !,t * TVEC_.PT)**-I *-'TYEV...T * N**2

CALL NULl"(OUH6, DUN5, DUN16, HM, Hf,l, NN)

C$SSSSSSSSSSSS$$SSSSSSSSS$SSSS$$$$SSSSSSS$$SSSSSSSSS
C Dete_lne DUN7 = DUH17 * DUM6 =
C (M**2 * TVEC *(TVEC T * H * TVEC PT)**-I)*
C ((TVEC T * K * TVEC')"+ (TVEC T *-M * TVEC_D))*

C (TVEC_T * H * TVEC_PT)**-I *-TVEV_T * N**2

CALL 14ULl'(DUN7, DUM17, DUN6_NN° t_4, NN)
NATRIX=' DUH7'

C CALL WRTT(NATRIX, DUN7oNN, NN)
C STOP

CSSSSSSSSSSSSSSSSSS$$S$t$SSS$S$S$$SSSS$S$$SSSS$$$$$$
C Assume a value for the lnttta] value of ACT
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C Say 90% of the original.

DO I=I,NN

DO J=I,NN
DUM5(I,J)=ACORG(I,J)
ACT(I,J)=ACORG(I,J)

END DO

END DO

DUMS(3,3)=(.9,0.)
DUM5(6,6)=(.g,o.)
DUM5(g,9)=(.g,O.)

DUM5(15,15)=(.9,O.)

DUM5(18,18)=(.9,O.)
DUM5(21,21)=(.9,O.)
DUM5(27,27)=(.9,O.)
DUM5(30,30)=(.g,o.)

DUM5(33,33)=(.g,o.)
ACT(2,2)=(.95,0.)

ACT(4,4)=(.g5,0.)
ACT(5,5)=(.95,0.)

ACT(6,6)=(.g5,0.)

C the step size is .05. The assumed value of ACT can grow to
C 105% by 3 steps, IJ=3.

DJ=.025

IJ=3

C lJl is counter for convergence.

IJI=O

IIJII=l
TMAGI=I.

TMAG2=I.

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C The following are the elements of C matrix.

C as they grow.

IIJ2=-1

DO II2=1,1J
IIJ2=IIJ2+1

ACT(3,3)=DUMS(3,3)+IIJ2*DJ
IJ4=-1

DO II4=1,IJ
IJ4=IJ4+1
ACT(6,6)=DUMS(6,6)+IJ4*DJ
IJS=-1

DO II5=],IJ
IJ5=IJ5+1

ACT(g,g)=DUM5(g,9)+IJ5*DJ
IJ6=-1

DO II6=l,IJ
lJ6=IJ6+l

ACI(15,15)=DUM5(15,15)+IJ6*DJ
IJ8=-I

DO IIS=l,IJ
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IJ8=IJ8+l
ACT(18,18)=DUM5(18,18)+IJ8*DJ
IJlO=-I
DO II10=1,1J
IJlO=IJlO+l
ACT(21,21)=DUM5(21,21)+IJ10*DJ
IJ11=-I
DO IIl1=I,IJ
IJ11=IJ11+1
ACT(27,27)=DUM5(27,27)+IJII*DJ
IJ12=-I

DO II12=l,IJ
IJ12=IJ12+1

ACT(30,30)=DUMS(30,30)+IJ12*DJ
IJ33=-I

DO II33=1,IJ
IJ33=IJ33+l

ACT(33,33)=DUMS(33,33)÷IJ33*DJ

CS$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Determine DUM1= ACT * TVEC

CALL NULT(DUM1,ACT,TVEC,NN,NN,MM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$S$$$$$$$$$$$$$$$$$$$$$$
C Determine DUM4 - TVEC_T * DUMI = TVEC_T * ACT * TVEC

CALL NULT(DLIH4,TVECT,DUMI,MM,NN,MM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Determine DUM8= DUM4 * DUM16 =
C (TVEC T * ACT * TVEC)*
C ((TVECT * M * TVEC_PT)**-I * TVEV_T * M**2)

CALL MULT(DUMS,DLIM4,DUM16,MM,MM,NH)

C$$$$$S$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Determine DUM9 = DUM17 * DUMB =
C (M*'2 * TVEC *(TVEC T * M * TVEC_PT)**-I)
C (TVEC T * ACT * TVEC)*
C ((TVECT * M * TVEC_PT)**-I * TVEV_T * M**2)

CALL MULT(DUMg,DUMIl,DUM8,NN,MM,NN)
MATRIX=' DUM9'
CALL WRTT(MATRIX,DUMg,NN,NN)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Determine DUMI
C (M**2 * TVEC *(TVEC T * M * TVEC PT)**-I)*
C ((TVEC T * K * TVEC_ + (TVEC_T *-M * TVEC_D) ÷ (TVEC_T * ACT * TVEC))*
C (TVEC_T * M * TVEC_PT)**-I " TVEV T * M**2

CALL ADD(DUMI,DUM7,DUMg,NN,NN)
MATRIX=' DUMI'

C CALL WRTT(MATRIX,DUMI,NN,NN)
C STOP

IJI=IJI+l
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C
C
C
C
C
C
C
C
C
C
C
C

C
C
C
C

TT5=O.
RR=O.
DO J=I,NN
DO I=I,NN
IF(I .EQ. I.AND.J .EQ. I)TT5=ABS(REAL(DUMI(I,J)))
RR=ABS(REAL(DUM](I,J)))
IF(RR .GT. TT5) THEN
TT5=RR
ELSE
ENDIF

END DO
END DO

CALL ZER(ACT,NN,NN)
CALL ADD(ACT,ACORG,DUMI,NN,NN)
MATRIX=' DUM2'

CALL WRTT(MATRIX,DUM2,NN,NN)

DO 2556 I=I,NN
I)02557 J=I,NN
ACC(I,J)=ACT(I,J)

2557 CONTINUE
2556 CONTINUE

IF(TT5. LT. 0.001) GO TO 2559

C$$S$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Determine DUM] = K * DUMI8 = K * TVEC PT

CALLNULT(DUH1.AKORG.DLIHI8.NN.NN,MM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Determine DUM2 - TVEC T * DUMI - TVEC T * K * TVEC PT

m n

CALL MULT(DUMZ,TVECT,DUMI,MH,NN,MM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Determine DUMI = M * TVEC_D

CALL MULT(DUMI,AMC,TVEC_D,NN,NN,NM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$S$
C Determine DUM3 = TVEC T * DUMI = TVEC T * H * TVEC D

CALL MULT(DUM3,TVECT, OUMI,MM,NN,NH}

C$$$$$$$$$$$$$$$$$$$$S$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Determine DUM] = ACT * TVEC

CALL MULT(DUM1,ACT,TVEC,NN,NN,MM)

CSSSSSSS$$S$$$SSSSSSSSSSSSSSSSS$SSSSSSSSSSSSS$$$$$$$
C Determine DUN4 = TVEC_T * DUN1 = TVEC_T * ACT * TVEC

CALL MULT(DUM4,TVEC_T,DUMI,MM,NN,MM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Determine DUM6 = DUM2 + DUM3 =

C (TVEC_T * K * TVEC) + (TVEC_T * M * TVEC_D)
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CALL ADD(DUN6, DUM2,DUM3, MM,MM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Determine DUH8 = DUN6 + DUN4 =

C (TVEC_T * K * TVEC) + (TVEC._T * N * TVEC__D) + (TVEC_T * ACT * TVEC)

CALL ADD(DUN8, DUN6, DUN4,NM, NN)

CSIISISSS$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Determine DUM14 -- DUM8 * DUH12

C ((TVEC T * K * TVEC) + (TVEC_T * M * TVEC_D) + (TVEC_T * ACT * TVEC))*
C (TVEC._T * M * TVEC_PT)**-]

CALL NULT (DUM14, DUNS,DUNlZ,HN, NH,MH)

C$$$$$$$SS$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Determfne LAMDA T - DUH15 - DUfl]2 * DUHZ4
C (TVEC I * H * TVEC PT)**-I *

C ((TVEC T * K * TVEC) + (TVEC T * M * TVEC_D) + (TVEC_T * ACT * TVEC))*
C (TVECT * M * TVEC PT)**-]

CALL HULT (DUH15. DUN12, DUH]4, NH, 14H,H14)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Determine DUH1 - TVEC T * M

CALL NULT (DUH1, TVEC T, ANC,N14,NN, NN)
C CALL NULT (DUM1, TVEC_T, AKC,HH, NN, NN)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Determine DUN2 - M * TVEC_PT

CALL HULT (DUHZ, ARC, DUN18, NN, NN,MM)
C CALL NULT (DUN2, AKC, DUH]8, NN, NN, HN)

CSSSSSSSSSSS$SSSSSSSSSSSSSSSSSSSS$$$$$$$$$$$$$$$$$$$
C Determine DUN3 = LARDA T * DUM1

C ((TVEC T * M * TVEC PT_'**-I *
C ((TVEC-T * K * TVEC_ + (TVEC T* M * TVEC_D) + (TVEC T * ACT* TVEC))*
C (TVEC T * 14 * TVEC_PT)**-I)*-
C (TVEC;T * M)

CALL MULT(DUH3,DUHZS,DUH1,14M,14M,NN)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Determine DUN4 = DIJMZ * DUN3 = DUHZ * LARDA T * DUM1
C (M * TVEC PT)*
C ((TVEC T ; 14 * TVEC PT)**-] *

C ((TVEC-T * K * TVEC)- + (TVEC T * 14 * TVEC D) + (TVEC_T * ACT * TVEC))*
C (TVEC T * H * TVEC_PT)**-I)*-
C (TVEC_-T * M)

CALL 14ULT(DUI44,DUM2, DUM3, NN, MM,NN)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C Determine AKT = NEW VALUE OF ARC = AKC + DUM4

C AKC +

C (M * TVEC PT)*

C ((TVEC_T _ 14 * TVEC_PT)**-I *
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C ((TVEC_T * K * TVEC) + (TVEC T * M * TVEC_D) + (TVEC_T " ACT * TVEC))*
C (TVEC T M * TVEC_PT)**-I)*-
C (TVEC_-T: M)

DO IK=I,NN
DO JK=I,NN
DUM4(IK,JK)=1.O*DUH4(IK,JK)
END DO

END DO

CALL $UBTT(AKT,AKORG,DUM4,NN,NN)
CALL ADD(AKT,AKORG,DUM4,NN,NN)

DO IK=I,NN
DO JK=J,NN
ARC(IK,JK)=AKT(IK,JK)
END DO
END DO

IFLAG = 5

CALL NULT(DUMI,AMC,AVEC..D,NN,NN,MM)
CALLNULT(DUM2,AVEC_D_.T,DUMJ,MM,NN,HM)

CALL HULT(DUMI,AMC,TVEC_D,NN,NN,MM)
CALL HULT(DUM3,TVEC_D._T,DUMI,MM,NN,NM)

DO IK=I,MM
DUMI(IK,IK)--DUM2(IK,IK)/DUM3(IK,IK)

END DO

TT21=ABS(REAL(DUMI(I,I)))
TT22=ABS(REAL(DUMI(2,2)))
TT23=ABS(REAL(DUM1(3,3)))
TT24=ABS(REAL(DUM1(4,4)))

TTI=ABS(REAL(AW(I,1)))
TT2=ABS(REAL(TW(1,1)))

TT5=ABS(ABS(REAL(AW(2,2)))-ABS(REAL(TW(2,2))))
TT6=ABS(ABS(REAL(AW(I,I)))-ABS(REAL(TW(I,I))))
TT7=ABS(ABS(AIMAG(AW(2,2)))-ABS(AIHAG(TW(2,2))))
TT8=ABS(ABS(AIMAG(AW(I,I)))-ABS(AIMAG(IW{I,I))))
TT55=ABS(ABS(REAL(AW(3,3)))-ABS(REAL(TW(3,3_)))
TT66=ABS(ABS(REAL(AW(4,4)))-ABS(REAL(TW(4,4))))
TTg=REAL(AVEC
TTIO=REAL(AVEC
TTII=REAL(AVEC
TTI2=REAL(AVEC
TTI3=REAL(AVEC
TTI4=REAL(AVEC
TTI5=REAL(AVEC
TTI6=REAL(AVEE

D(1,2))
D(I,3))
-D(I,18))
D(1,25))
D(2,2))
D(Z,3))
D(2,18))
D(2,25))

IF(TT5 .LT. I. .AND. TT6 .LT. I.) THEN
1F(TT7 .LT. I. .AND. TT8 .LT. 1.) IHEN
IF(TT55 .LT. i. .AND. T66 .LT. I.) THEN
IF(TT21 .LT. 1.004 .AND. TT21 .GT. 0.996) THEN
IF(TT22 .LT. 1.004 .AND. TT22 .GT. 0.996) THEN
IF(TT21 .LT. 1.02 .AND. TT21 .GT. 0.98) THEN
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IF(TT22 .LT. 1.02 .AND. TT22 .GT. 0.98) THEN
IF(TT23 .LT. 1.02 .AND. T123 .GT. 0.98) THEN
IF(TT24 .LT. 1.02 .AND. TT24 .GT. 0.98) THEN

IF(TT9 .LT. .339 .AND. TT9 .GT. .337) THEN
IF(TTIO .LT. -.335 .AND. TTlO .GT. -.337) THEN
IF(TT11 .LT. -.644 .AND. TTI1 .GT. .545) THEN
IF(TT12 .LT. .196 .AND. TT12 .GT. .194) THEN
IF(TT13 .LT. .152 .AND. TT13 .GT. .150) THEN
IF(TT14 .LT. .155 .AND. TTI4 .GT. .153) THEN
IF(TT15 .LT. .614 .AND. TT15 .GT. .612) THEN
IF(TT16 .LT. .32 .AND. TT15 .GT. .318) THEN

2559 WRITE(2,2600)IJI,IIJII
2600 FORMAT(5X,'NO.OF ITERATNS =',IS,'ITERATION',I5)

IFLAGI=5

C

MATRIX=' DUM4'
CALL WRTT(MATRIX,DUM4,NN,NN)

MATRIX=' CKTSUBT'
CALL WRTT(MATRIX,AKC,NN,NN)
MATRIX=' CCT'

CALL WRTT(MATRIX,ACT,NN,NN)
MATRIX=' CW'
CALL WRTT(NATRIX,AW,NH,MM)
MATRIX=' CVEC'
CALL WRTT(MATRIX,AVEC,NN,MM)
MATRIX=' CVEC D'
CALL WRTT(MATRIX,AVEC_D,NN,MH)
TYPE *,' ITERATION',IJI
TYPE *.'11',REAL(AW(1,I)),REAL(TW(I,I))
TYPE *,'22',REAL(AW(2,2)),REAL(TW(2,2))
TYPE *,'MAG',TMAG1,TMAG2
IF(IFLAGI .EQ. 6) GO TO 999
IF(IFLAGI .EQ. 6) GO TO 998

C ELSE
C ENDIF
C ELSE
C ENDIF
C ELSE
C ENDIF
C ELSE
C ENDIF
C ELSE
C ENDIF

ELSE
ENDIF
ELSE
ENDIF
ELSE
ENDIF
ELSE
ENDIF
ELSE
ENDIF
ELSE
ENDIF
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2558

ELSE
ENDIF

IF(IFLAG .EQ. 5) GO TO 5
TYPE * IJIf

998 END DO
END DO
END DO
END DO

END DO
END DO
END DO
END DO
END DO

C DETERMINE THE ORTHOGONALITY CONDITION.

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUMI = M * AVEC D

D

999 CALL MULT(DUM1,AMC,AVEC_D,NN,NN,MM)
MATRIX=' DUMI = N * AVEC D'

C CALL WRTT(MATRIX,DUMI,NN,MM) -

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

C DETERMINE DIJM2= AVEC._D_T* DUMI = AVEC_D_T * M * AVEC_.D

CALL MULT(DUM2,AVEC_D_T,DUMI,MM,NN,NM)
MATRIX=' DUM2 = AVEC D T * M * AVEC D'

C CALL WRTT(MATRIX,DUM2,MM,MMT -

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUMI = K * AVEC

CALL MULT(DUMI,AKT,AVEC,NN,NN,MM)
MATRIX=' DUMI = K * AVEC'

C CALL WRTT(MATRIX,DUMI,NN,MM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUM4 = AVEC T * DUMI = AVEC T * K * AVEC

m

CALL MULT(DUM4,AVEC_T,DUMI,MM,NN,MM)
MATRIX=' DUMA = AVEC T * K * AVEC'

C CALL WRTT(MATRIX,DUM4,MN,F4M)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE EB = DUMA - DUM2

CALL SUBTT(EB,DUM4,DUM2,MM,MM)

WRITE(2,80O)
MATRIX='EB = AVEC T * K * AVEC - AVEC_D_T * N * AVEC_D'
CALL WRTT(MATRIX,EB,MM,MM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
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C DETERMINE DUMI = M * TVEC D

C

CALL HULT(DUMI,AMC,TVEC_D,NN,NN,MM)
MATRIX=' DUMI = M * TVEC D'

CALL WRTT(MATRIX,DUMI,NN,MM) -

CSSS$$SSSSSSSSSSSSSSS$SSSSSSSSSS$SSSS$$$SS$$S$SSSS$$
C DETERMINE DUM2 = TVEC D T * DUMI = TVEC D T * M * TVEC D

CALL MULT(DUM2,TVEC_D_T,DUMI,MM,NN,MM)
MATRIX=' DUM2 = TVEC D T * M * TVEC D'
CALL WRTT(MATRIX,DUMZ,MM,FIH_

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUH] = K * TVEC

CALLMULT(DUM1,AKT,TVEC,NN,NN,MM)
MATRIX=' DUM1 = K * TVEC'
CALLWRTT(NATRIX,DUM1,NN,MM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINEDUM4 = TVEC T * DUMI = TVEC T * K * TVEC

m

CALL MULT(DUM4,TVEC._T,DUHI,MM,NN,HM)
MATRIX=' DUM4 = TVEC T * K * TVEC'
CALL WRTT(MATRIX,DUM4,MM,MM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE TB = DUM4 - DUH2

CALL SUBTT(TB,DUH4,DUM2,MH,V,H)
WRITE(2,801)
MATRIX='TB = TVEC T * K * TVEC - TVEC..D..T* M * TVEC D'
CALL WRTT(MATRIX,TB,MM,I_4)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINEDUM1= M * TVEC D

CALL MULT(DUMI,AMC,TVEC_D,NN,NN,MM)
MATRIX=' DUMI = H * TVEC D'
CALL WRTT(MATRIX,DUMI,NN,MM) -

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUM2 = TVEC_DT * DUMI = TVEC._D_T* M * TVEC._D

C

CALL MULT(DUM2,TVEC D T,DUMI,MM,NN,MM)
MATRIX=' DUH2 ; _VEC D T * M * TVEC_D'
CALL WRTT(MATRIX,DUM2,MM,Fe4T

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUMI = K * TVEC

C

CALL MULT(DUH1,AKORG,TVEC,NN,NN,MM)
MATRIX=' DUH1 = K * TVEC'
CALLWRTT(HATRIX,DUM1,NN,MH)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUM4 = TVEC_T * DUMI = TVEC_T * K * TVEC

CALL MULT(DUM4,TVEC_T,DUMI,MM,NN,MM)
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MATRIX=' DUM4 = TVEC T * K * TVEC'

CALL WRTT(MATRIX,DUM4,MM,_M)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE TB = DUM4 - DUM2

CALL SUBTT(TB,DUM4,DUM2,MM,MM)
WRITE(2,802)
MATRIX='TB = TVEC T * K * TVEC - TVEC D T * M * TVEC D'
CALL WRTT(MATRIX,TB,MM,MM) - - -

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUMI = M * AVEC D

B

CALL MULT(DUMI,AMC,AVECD,NN,NN,MM)
MATRIX=' DUM] = M * AVEC D'

CALL WRTT(MATRIX,DUMI,NN,MM) -

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUM2 = AVEC T * DUMI - AVEC T * M * AVEC D

CALL MULT(DUMZ.AVEC_T,DUMI,MM,NN,I_)
MATRIX=' DUMZ - AVEC T * M * AVEC D'
CALL WRTT(MATRIX,DUM2,1_,_M)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUM] = M * AVEC

CALL MULT(DUMI,AMC,AVEC,NN,NN,MM)
MATRIX=' DUMI = M * AVEC'
CALL WRTT(MATRIX,DUM1,NN,MM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUM4 - AVEC D T * DUMI - AVEC D T * M * AVEC

CALL MULT(DUM4,AVEC_DT,DUMI,MM,NN,MM)
MATRIX=' DUM4 = AVEC D T * M * AVEC'
CALL WRTT(MATRIX,DUM4,MM,F_MT

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUM5 = DUM2 + DUM4 =

C AVEC_T * M * AVEC_D + AVEC_D_T * M * AVEC

CALL ADD(DUMS,DUM2,DUM4,MM,MM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUMI = C * AVEC

CALL MULT(DUMI,ACT,AVEC,NN,NN,MM)
MATRIX=' DUMI = C * AVEC'
CALL WRTT(MATRIX,DUM1,NN,MM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUM4 = AVEC T * DUMI * AVEC T * C * AVEC

CALL MULT(DUM4,AVEC_T,DUMI,MM,NN,MM)
MATRIX=' DUM4 = AVEC T * C * AVEC'
CALL WRTT(MATRIX,DUM4,MM,MM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
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C DETERMINEEA = DUM4+ DUM5

CBO0

CALL ADD(EA,DUM4,DUM2,HM,MM)
WRITE(2,BO0)
FORMAT(IX,'ORTHO BASED ON IMPROVED MATRICES AND VECTORS')

MATRIX='EA=AVEC D T*C*AVEC+AVEC_D._T*M*AVECD+AVEC T*M*AVEC D T'
CALL WRTT(MATRIX,EA,MM,MM) ....

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUMI = M * TVEC D

CALL MULT(DUMI,AMC,TVEC_D,NN,NN,MM)
MATRIX=' DUMI = M * TVEC D'

CALL WRTT(MATRIX,DUMI,NN,MM) -

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUM2 = TVEC T * DUMI = TVEC T * M * TVEC D

CALL MULT(DUMZ,TVEC_T,DUMI,MH,NN,MM)
MATRIX=' DUM2 = TVEC T * M * TVEC D'
CALL WRTT(MATRIX,DUM2,NM,NH)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUMI = M * TVEC

CALL NULT(DUMI,AMC,TVEC,NN,NN,NM)
MATRIX=' DUMI = M * TVEC'
CALL WRTT(MATRIX,DUMI,NN,HH)

C$$$$$$$$$}$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUM4 = TVEC D T * DUMI " TVEC D T * N * TVEC

CALL NULT(DUM4,TVEC D T,DUNI,NN,NN,HM)
MATRIX=' DUM4 ; TVEC D T * H * TVEC'
CALL WRTT(MATRIX,DUM4,HM,FIM_

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUM5 = DUM2 + DUM4 =
C TVEC_.T* M * TVEC_D + TVEC...DJ* H * TVEC

CALL ADD(DUM5,DUMZ,DUH4,I,t4,1'g4)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUMI = C * TVEC

CALL MULT(DUMZ,ACT,TVEC,NN,NN,MM)
MATRIX=' DUM1 = C * TVEC'
CALL WRTT(MATRIX,DUMI,NN,MM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUM4 = TVEC T * DUMI = TVEC T * C * TVEC

CALL MULT(DUM4,TVEC_T,DUMI,MM,NN,MM)
MATRIX=' DUM4 = TVEC T * C * TVEC'
CALL WRTT(MATRIX,DUM4,MM,FIM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE TA = DUM4 + DUM5

CALL ADD(TA,DUM4,DUM2,HM,MH)
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C801
WRITE(2,801)

FORMAT(IX,'ORTHOBASEDON TEST VECTORSAND IMPROVEDMATRICES')
MATRIX='TA=TVEC D T*C*TVEC+TVEC_D_T*M*TVEC_D+TVECT*M*TVEC_D_.T'
CALL WRTT(MATRIX,TA,MR,MM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$S$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUM1 = M * TVEC D

CALL MULT(DUMI,AMC,TVEC_D,NN,NN,MM)
MATRIX=' DUMI = M * TVEC D'
CALL WRTT(MATRIX,DUMI,NN,MR)-

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUM2 = TVEC_T * DUMI = TVEC_T * M * TVEC_D

CALL MULT(DUM2,TVEC_T,DUMI,MR,NN,MM)
MATRIX=' DUM2 = TVEC T * M * TVEC D'
CALL WRTT(MATRIX,DUM2,MM,MM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUMI = M * TVEC

CALL NULT(DUMI,RMC,TVEC,NN,NN,MM)
MATRIX=' DUMI = M * TVEC'
CALL WRTT(MATRIX,DUM1,NN,MR)

C$$$S$SS$SS$$S$$$$$$$$S$$S$$$$$$$SSS$$S$$S$$$$$$$$$$
C DETERMINE DUM4 = TVEC_D_T * DUMI = TVEC_D_T * M * TVEC

CALL MULT(DUI_,IVEC D._T,DUMI,MR,NN,MM)
MA'IRIX=' DUM4 - TVEC D T * M * TVEC'

CALL WRTT(MATRIX,DUM4,MM,_.M_-

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUM5 = DUM2 + DUM4 =
C TVEC_T * M * TVEC_D + TVEC_D_T * M * TVEC

CALL ADD(DUM5,DUM2,DUM4,MM,MR)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUMI = C * TVEC

CALL MULT(DUMI,ACORG,TVEC,NN,NN,MM)
MATRIX=' DUMI = C * TVEC'
CALL WRTT(MATRIX,DUM1,NN,MM)

C$$S$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE DUM4 = TVEC T * DUMI = TVEC_T * C * TVEC

m

CALL MULT(DUM4,TVEC T,DUM1,MR,NN,MM)
MATRIX=' DUM4 _ TVEC T * C * TVEC'
CALL WRTT(MATRIX,DUM4,MR,MM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C DETERMINE TA = DUM4 + DUM5

C802

CALL ADD(TA,DUM4,DUM2,MM,ff_)
WRITE(2,802)
FORMAT(1X,'ORTHO BASED ON TEST VECTORS AND ANALYTICAL MATRICES')
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MATRIX='TA=TVECD T*C*TVEC+TVEC_D_T*M*TVEC_D+TVEC_T*H*TVEC_D_T'
CALL WRTT(MATRIX,TA,MM,MM)

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

1000 END

C=SUBROUTINE=ZER
SUBROUTINE ZER(A,N,M)

C A(N,M)=0.
COMPLEX A(500,500)
INTEGER I,J,M,N
DO I I=I,N
DO 2 J=I,M

A(I,J)=(O.,O.)
2 CONTINUE
I CONTINUE

RETURN
END

' I5, 5X 'M - ',15)I I

COL')

C-SUBROUTINE=WRT
SUBROUTINE WRT(A,N,M)
COMPLEX A(N,M)
INTEGER I,J,N,M

WRITE(2,11S)N,H
115 FORMAT(IOX,'N =

WRITE(2,114)
114 FORMAT(SX)

WRITE(Z,114)
WRITE(2,114)
WRITE(2,116)

116 FORMAT(SX,' ROW
DO 130 I=I,N

DO 131J=I.M
WRITE(Z,132)I,O,A(I,J)

132 FORMAT(5X,I4,5X,I4,5X,FS.6,5X,F8.6)
131 CONTINUE

WRITE(2,114)
WRITE(2,114)

130 CONTINUE
RETURN
END

C=SUBROUTINE=WRTT
SUBROUTINE WRTT(NAME,A,N,H)
COMPLEXA(500,500)
INTEGER I,J,N,M
CHARACTERNAME*80

WRITE(2,125)
WRITE(2,125)
WRITE(2,125)

125 FORMAT('*********************************

 ITE(2,114)
WRITE(2,120)flAME

120 FORMAT(5X,A50)
WRITE(2,114)
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wRITE(2,114)
WRITE(2,115)N,M

115 FDRMAT(IOX,'NUMBER OF ROWS, N = ',15,
4.5X0'NUMBEROF COLUMN, M = ',15)

WRITE(2,114)
114 FORMAT(5X)

WRITE(2,114)
WRITE(2,114)
WRITE(2,116)

116 FORMAT(5X,' COL

117

132
131

130

4.4-

4-

ROW

REAL
IMAGINARY')

WRITE(2,11/)
FORMAT(7X,'*****',4X,'*****',IOX,

DO 130 l=l,N
DO 131J=I,M
WRITE(2,132)I,J,A(I,J)
FORMAT(5X,14,SX,14,5X,E20.g,SX,E20.9)

CONTINUE
WRITE(Z,114)
WRITE(2,114)
CONTINUE

RETURN
END

C=SUBROUTINE=ADD
SUBROUTINE ADO(A,B,C,M,N)

C

C
C MATRIX ADDITION
C

C
C

C
C
C

(A,=B+C)

COMPLEX A,B,C
INTEGER I,J,M,N
IMPLICIT REAL*8 (A-H,O-Z)

DIMENSION A(M,N),B(M,N),C(M,N)
COMPLEX A(500,500),B(500,500),C(500,500)

es:vax

DO 11=I,M
DO 2 d=I,N
A(I,J)=B(I,J)+C(I,J)
CONTINUE
CONTINUE
RETURN
END

C=SUBROUTINE=SUBTT
SUBROUTINE SUBTT(A,B,C,M,N)

C

C
C MATRIX ADDITION ( A = B - C )

C
C1k Ik • ik t Ik
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COMPLEXA,B,C
INTEGER I,J,M,N
IMPLICIT REAL*8 (A-H,O-Z)

DIMENSION A(M.N),B(M,N),C(H,N)
COMPLEX A(SOO,5OO),B(500,500),C(500,SO0)

es:vax

2
I

DO I I=],M
DO 2 J=I,N
A(I,J}=B(I,JJ-C(I,J)
CONTINUE
CONTINUE
RETURN
END

C-SUBROUTINE=MULTT
SUBROUTINEMULTT(A,B,C,L,N,N)

C
C_ lk" ,lk t ,Ik ",IV

C
C
C MATRIX MULTIPLICATION
C
Ct _' t '/k _ _

C

T
(A-B'C)

IMPLICIT REAL*B (A-H,O-Z)

DIMENSION A(L,N),B(L,H),C(N,M)
DO 1 J-I,N

DO I K=l,N
IF(C(J,K).EQ.O.DO) GOT(] 1
DO 2 I=I,L

k(I,J)-A(I,J)+B(I,K)*C(J,K)
2 CONTINUE
1 CONTINUE
RETURN
END

M

es:vax

C=SUBROUTINE=TRANSP CALLEDBY 'CNODEL'
SUBROUTINETRANSP(A,N)

C

C
C THIS SUBROUTINE TRANSPOSES AN N * N MATRIX ONTO ITSELF
C

C
COMPLEXA,AH
DIMENSION A(N,N)
IF(N.LE.]) RETURN
NI=N-I
DO 1 I=I,N1
11=I+1
DO 1J=I1,N
AH-A(I,J)
A(I,J)=A(J,I)
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A(J.I)=AH
I CONTINUE
RETURN
END

I0

40
30
20

7O
6O
5O

80

100
gO

C
110

SUBROUTINE MATINVC(A,B,NROW.NR)
COMPLEX A(500.500),B(500.500)
COMPLEX DUM,FACTOR
INTEGER I,K,NROW,I1,J,JI

K = 0

DO I0 I = I , NROW
K = K + I
A(I, (NROW + K)) = I.

CONTINUE

DO 20 I = I , (NROW - I)

B(I, I) = A(I, I)
DO 30 II = (I + I), NROW

FACTOR = A(II, I) / A(I, I)
DO 40 Jl = I, NROW

A(II, Jl) = A(II, Jl) - FACTOR * A(I, Jl)
A(II,(JI+NROW)) = A(II,(JI+NROW))-FACTOR*A(I,(JI+NROW))

CONTINUE
CONTINUE
CONTINUE

DO 50 I = NROW, 2 , -1
DO 60 II = I , (I - 1)

FACTOR = A(II, I) / A(I, I)

DO 70 Jl = I , NROW

A(II, Jl) = A(II, Jl) - FACTOR * A(I, Jl)
A(II,(JI+NROW))=A(I1,(JI+NROW))-FACTOR*A(I.(J1+NROW))
CONTINUE
CONTINUE

CONTINUE

DO BO I = I, NROW
B(I, I) = A(I, I)

CONTINUE

DO 90 I = I . NROW
DO TO0 J = I , NROW
A(I, J) = A(I, J) / B(I. I)
A(I, (J + NROW)) = A(I, (J + NROW)) / B(I, I)

CONTINUE
CONTINUE

WRITE(*,IIO)
FORMAT(SX,'ROW',SX,'COLUMN',SX,'INVERSE(I,J)')
DO 120 I : I , NROW
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C
C140
C
C141
130
120

DO 130 J = I , NROW
B(I,J)=A(I,(J+NROW))
WR]TE(*,I40)I, J, A(I, (J + NROW))
FORMAT(5X,I5,SX,I5,5X,FIO.6,5X,FIO.6)
WRITE(*,141)I, J, B(I, J)
FORMAT(2OX,15,5X,15,5X,FIO.6,5X,FIO.6)

CONTINUE
CONTINUE
RETURN
END

C

17

16
20

SUBROUTINE NULT(A,B,C,NL,NM,NN)
A(NL,NN)=B(NL,NM)*C(NM,MN)

COMPLEXA(500,500),B(500,500),C(500,500)
COMPLEXDUN
INTEGER I,J,K,L,M,N,NL,NM,NN

DO 20 I=J,NN
DO 16 N=I,NL
DUN=(0.,0.)
DO ll J=I,NM

DOM=DUM+C(J,I)*B(N,J)
CONTINUE

A(N,I)=DUM
CONTINUE

CONTINUE

RETURN
END

C
C

C
17

C
18

C
2O

SUBROUTINE RNAS(KAA,14AA,CAA,N)
REAL KAA(5OO,5OO),NAA(5OO,5OO),CAA(5OO,5OO),DAA(5OO,5OO),VAL(5)
INTEGER NROW,NNROW,NCOL,I,II,K,KI,K2,K3,J,NBEG,NUM
OPEN(UNIT=I,FILE='TI.F21',STATUS='OLD')
OPEN(UNIT-2,FILE='OUT.DAT',status='new')

DO 1 I=I,N
I)02 O=l,N
RAA(I,J)=O.

MAA(I,J)_O.
CAA(I,J) O.
DAA(I,J)=O.
CONTINUE
CONTINUE

DO 99 11=I,3
READ(I,II)NROW,NCOL
WRITE(*,JT)NROW,NCOL
FORMAT(21B)

DO ]00 I=I,NROW
READ(I,I8)NNROW,NBEG,NUM
WRITE(*,IS)NNROW,NBEG,NUM
FORMAT(318)

IF (NUN .LE. 5) THEN

READ(1,20)VAL(1),VAL(2),VAL(3),VAL(4),VAL(5)
WRITE(*,20)VAL(1),VAL(Z),VAL(3),VAL(4),VAL(5)
FORMAT(5E16.9)

-226 -



C
235
ZOO

210

C

C
205

C
220

I00

K3=O
KI=NBEG
K2=KI+NUM-1

DO 200 J=KI,K2
K3=K3+I
DAA(NNROW,J)=VAL(K3)

IF(IT.EQ.I)KAA(NNROW,J)=DAA(NNROW,J)
IF(II.EQ.2)MAA(NNROW,J)=DAA(NNROW,J)
IF(II.EQ.3)CAA(NNROW,J)=DAA(NNROW,_)

WRITE(2,235)NNROW,J,DAA(NNROW,J)
FORMAT(215,5X,E16.9)

CONTINUE

ELSE

K1 = NBEG
K2=KI+5-I
READ(1,ZO)VAL(1),VAL(Z),VAL(3),VAL(4),VAL(5)
WRITE(*,20)VAL(1),VAL(Z),VAL(3),VAL(4),VAL(5)

K3=O
DO 205 J=K1,K2

K3=K3+l
DAA(NNROW,_)=VAL(K3)

IF(II.EQ.I)KAA(NNROW,J)=DAA(NNROW,J)
IF(II.EQ.Z)MAA(NNROW,J)=DAA(NNROW,J)
IF(II.EQ.3)CAA(NNROW,J)=DAA(NNROW,J)

WRITE(2,Z35)NNROW,J,DAA(NNROW,J)
CONTINUE
NUM = NUM - 5
IF (NUM .GE. 5) THEN

KI=KI+5
GO TO 210

ELSE
IF (NUM .EQ. O) GO TO 100
READ(I,20)VAL(1),VAL(2),VAL(3),VAL(4),VAL(5)
WRITE(*,ZO)VAL(1),VAL(2),VAL(3),VAL(4),VAL(5)
K1=K2+l
K2=KI+NUM-1
K3 = 0
DO Z20 J=K1,K2

K3 = K3 + 1
DAA(NNROW,a)=VAL(K3)
IF(II.EQ.I)KAA(NNROW,J)=DAA(NNROW,J)
IF(II.EQ.2)MAA(NNROW,J)=DAA(NNROW,J)
IF(II.EQ.3)CAA(NNROW,J)=DAA(NNROW,J)
WRITE(2,235)NNROW,J,DAA(NNROW,J)

CONTINUE
ENDIF

ENDIF
CONTINUE

19

9g

IF(II.EQ.3) GO TO 171
READ(I,I9)DUM
READ(1,Ig)DUM
FORMAT(2OA)

CONTINUE
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RETURN
END

SUBROUTINE LZIT(N, A, NA, B, NB, X, NX, WANTX, ITER, EIGA,
* EIGB)

C THIS SUBROUTINE SOLVES THE GENERALIZED EIGENVALUE PROBLEM
C A X = LAMBDA B X
C WHERE A IS A COMPLEX UPPER HESSENBERG MATRIX OF
C ORDER N AND B IS A COMPLEX UPPER TRIANGULAR MATRIX OF ORDER N
C INPUT PARAMETERS
C N ORDER OF A AND B
C A AN N X N UPPER HESSENBERG COMPLEX MATRIX
C NA THE ROW DIMENSION OF THE A MATRIX
C B AN N X N UPPER TRIANGULAR COMPLEX MATRIX
C NB THE ROW DIMENSION OF THE B MATRIX
C X CONTAINS TRANSFORMATIONS TO OBTAIN EIGENVECTORSOF
C ORIGINAL SYSTEM. IF EIGENVECTORS ARE REQUESTED AND QZHES
C IS NOT CALLED, X SHOULDBE SET TO THE IDENTITY MATRIX
C NX THE ROWDIMENSIONOF THE X MATRIX
C WANTX LOGICAL VARIABLEWHICH SHOULDBE SET TO .TRUE.
C IF EIGENVECTORS ARE WANTED. OTHERWISE IT
C SHOULDBE SET TO .FALSE.
C OUTPUTPARAMETERS
C X THE ITH COLUMNCONTAINSTHE ITH EIGENVECTOR
C IF EIGENVECTORSARE REQUESTED
C ITER AN INTEGER ARRAYOF LENGTHN WHOSEITN ENTRY
C CONTAINSTHE NUMBEROF ITERATIONS NEEDEDTO FIND
C THE ITH EIGENVALUE. FOR ANY I IF ITER(I) --I THEN
C AFTER30 ITERATIONS THERE HAS NOT BEENA SUFFICIENT
C DECREASEIN THE LAST SUBDIAGONALELEMENTOF A
C TO CONTINUE ITERATING.
C EIGA A COMPLEXARRAYOF LENGTHN CONTAININGTHE DIAGONALOF A
C EIGB A COMPLEXARRAYOF LENGTHN CONTAINING THE DIAGONALOF B
C THE ITH EIGENVALUECAN BE FOUNDBY DIVIDING EIGA(I) BY
C EIGB(I). WATCH OUT FOR EIGB(I) BEING ZERO

COMPLEXA(NA,N), B(NB,N), EIGA(N), EIGB(N)
COMPLEXS, W, Y, Z, CSQRT
COMPLEX X(NX,N)
INTEGER ITER(N)
COMPLEX ANNMI, ALFM, BETM, D, SL, DEN, NUM, ANMIMI
REAL EPSA, EPSB, SS, R, ANORM, BNORM, ANI, BNI, C
REAL DO, DI, D2, EO, El
LOGICAL WANTX
NN = N

C COMPUTETHE MACHINEPRECISION TIMES THE NORMOF A AND B
ANORM= 0.
BNORH= O.
DO 30 I=I,N

ANI = O.
IF (I.EQ.I) GO TO lO
Y = A(I,I-])
ANT = ANI + ABS(REAL(Y)) + ABS(AIMAG(Y))

10 BNI = O.
DO 20 J=I,N
ANI - ANI + ABS(REAL(A(I,J))) + ABS(AIMAG(A(I,J)))
BNI = BNI + ABS(REAL(B(I,J))) + ABS(AIMAG(B(I,J)))

20 CONTINUE
IF (ANI.GT.ANORM) ANORM = ANI
IF (BNI.GT.BNORM) BNORM = BNI

30 CONTINUE
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IF (ANORM.EQ.O.)ANORM= 1.0
IF (BNORM.EQ.O.)BNORM= 1.0
EPSB= BNORM
EPSA= ANORM

40 EPSA= EPSA/2.0
EPSB= EPSB/2.0
C = ANORM÷ EPSA
IF (C.GT.ANORM)GOTO40
IF (N.LE.I) GOTO320

50 ITS = 0
NM1= NN- 1

CCHECKFORNEGLIGIBLESUBDIAGONALELEMENTS
60 D2= ABS(REAL(A(NN,NN)))+ ABS(AIMAG(A(NN,NN)))

DO 70 LB=2,NN
L = NN + 2 - LB
SS = D2

Y = A(L-I,L-I)
D2 = ABS(REAL(Y)) + ABS(AIMAG(Y))
SS = SS + D2

Y = A(L,L-I)
R = SS + ABS(REAL(Y)) + ABS(AIMAG(Y))
IF (R.EQ.SS)GO TO 80

lO CONTINUE
L=I

80 IF (L.EQ.NN)GO TO 320
IF (ITS.LT.30)GO TO 90
ITER(NN) = -I
IF (ABS(REAL(A(NN,NMI)))+ABS(AIMAG(A(NN,NMI))).GT.O.8"

* ABS (REAL(ANNMI))+ABS(AIMAG(ANNMI))) RETURN
go IF (ITS.EQ.IO .OR. ITS.EQ.20) GO TO IIO

C COMPUTE SHIFT AS EIGENVALUE OF LOWER 2 BY 2

ANNMI = A(NN,NMI)
ANMIMI = A(NMI,NMI)
S = A(NN,NN)*B(NMI,NM1) - ANNMI*B(NMI,NN)
W = ANNMI*B(NN,NN)*(A(NM1,NN)*B(NMI,NMI)-B(NMI,NN)*ANMIMI)
Y = (ANMIMI*B(NN,NN)-S)/2.
Z = CSQRT(Y*Y+W)
IF (REAL(Z).EQ.O.O.AND. AIMAG(Z).EQ.O.O) GO TO I00
DO = REAL(Y/Z)
IF (DO.LT.O.O)Z =-Z

100 DEN = (Y+Z)*B(NMI,NMI)*B(NN,NN)
IF (REAL(DEN).EQ.O.O .AND. AIMAG(DEN).EQ.O.O) DEN =

* CMPLX(EPSA,O.O)
NUM = (Y+Z)*S - W
GO TO 120

C AD-HOC SHIFT
110 Y ,=A(NMI,NN-2)

NUM = CMPLX(ABS(REAL(ANNMI))+ABS(AIMAG(ANNM1)),ABS(REAL(Y))
* +ABS(AIMAG(Y)))
DEN---(I.O,O.O)

C CHECK FOR 2 CONSECUTIVE SMALL SUBDIAGONAL ELEMENTS

120 IF (NN.EQ.L+I)GO TO 140
D2 = ABS(REAL(A(NM1,NM1))) ÷ ABS(AIMAG(A(NMI,NMI)))
El = ABS(REAL(ANNMI)) + ABS(AIMAG(ANNM]))
D1 = ABS(REAL(A(NN,NN))) + ABS(AIMAG(A(NN,NN)))
NL = NN - (L+I)
DO 130 MB=],NL
M = NN - MB
EO = El
Y = A(M,M-])
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El = ABS(REAL(Y))+ ABS(AIMAG(Y))
DO= DI
DI = D2
Y = A(M-],M-I)
D2-- ABS(REAL(Y))÷ ABS(AIMAG(Y))
Y = A(M,N)*DEN- B(M,M)*NUM
DO= (DO+DI+D2)*(ABS(REAL(Y))+ABS(AIMAG(Y)))
EO= EO*EI*(ABS(REAL(DEN))+ABS(AIMAG(DEN)))+ DO
IF (EO.EQ.DO)GOTO150

130CONTINUE
140 N = L
150 CONTINUE

ITS = ITS ÷ 1
W --A(M,M)*DEN - B(M,M)*NUM
Z = A(M41,M)*DEN
DI = ABS(REAL(Z)) + ABS(AIMAG(Z))
D2 = ABS(REAL(W)) + ABS(AINAG(W))

C FIND L AND M AND SET A=LAN AND B=LBM
C NP1 = N + 1

LORI - L
NNORN= NN
IF (.NOT.WANTX) GO TO 160
LOR1 = ]
NNORN- N

160 DO 310 I=M,NM1
J=l+l

C FIND ROW TRANSFORMATIONS TO RESTORE A TO
C UPPER HESSENBERG FORM. APPLY TRANSFORMATIONS

.-C TO A ANDB
IF (I.EQ.M) GO TO 170
W- A(I,I-I)
Z = A(J,I-I)
DI - ABS(REAL(Z)) + ABS(AIMAG(Z))
1)2= ABS(REAL(W)) + ABS(AIMAG(W))
IF (D1.EQ.O.O) GO TO 60

170 IF (D2.GT.D1) GOTO 190
C MUST INTERCHANGE ROWS

DO 180 K-I,NNORN
Y - A(I,K)
A(I,K) = A(J,K)
A(J,K) = Y
Y = B(I,K)
B(I,K) = B(J,K)
B(J,K) = Y

180 CONTINUE
IF (I.GT.M) A(I,I-I) --A(J,I-I)
IF (D2.EQ.O.O)GO TO 220

C THE SCALING OF W AND Z IS DESIGNED TO AVOID A DIVISION BY ZERO
C WHEN THE DENOMINATOR IS SMALL

Y = CMPLX(REAL(W)/DI,AIMAG(W)/DI)/CMPLX(REAL(Z)/D],AIMAG(Z)/
* DI)

GOTO 200
lgO Y = CMPLX(REAL(Z)/D2,AIHAG(Z)/D2)/CMPLX(REAL(W)/D2,AIMAG(W)/

* D2)
200 DO 210 K=I,NNORN

A(J,K) = A(J,K) - Y*A(I,K)
B(J,K) = B(J,K) - Y*B(I,K)

210 CONTINUE
220 IF (I.GT.M) A(J,I-I) = (0.0,0.0)

C PERFORMTRANSFORMATIONSFROMRIGHT TO RESTOREB TO
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C TRIANGLULAR FORM
C APPLY TRANSFORMATIONS TO A

Z = B(J,I)
W = B(J,J)

D2 = ABS(REAL(W)) + ABS(AIMAG(W))
DI = ABS(REAL(Z)) + ABS(AIMAG(Z))
IF (DI.EQ.O.O)GO TO 60
IF (D2.GT.DI) GO TO 270

C MUST INTERCHANGE COLUMNS

DO 230 K=LORI,J
Y = A(K,J)
A(K,J) = A(K,I)
A(K,I) _,_Y
Y = B(K,J)
B(K,J) = B(K,I)
B(K,I) = Y

230 CONTINUE

IF (I.EQ.NM]) GO TO 240
Y = A(J+I,J)
A(J+I,J) = A(J+I,I)
A(J+I,I) = .Y

240 IF (.NOT.WANTX)GO TO 260
DO 250 K=I,N
Y = X(K,J)
X(K,J) = X(K,I)
X(K.I); Y

250 CONTINUE

260 IF (D2.EQ.O.O)GO TO 310
Z = CMPLX(REAL(W)IDI,AIMAG(W)/DI)/CMPLX(REAL(Z)/DI,AIMAG(Z)/

* DI)
GO TO 280

270 Z = CMPLX(REAL(Z)ID2,AIMAG(Z)ID2)/CMPLX(REAL(W)/D2,AIMAG(W)/
* D2)

28O DO 290 K=LORI,J
A(K,I) = A(K,I) - Z*A(K,J)
B(K,I) = B(K,I) - Z*B(K,J)

290 CONTINUE
B(J,I) = (0.0,0.0)
IF (I.LT.NMI) A(I+2,I) = A(I+2,I) - Z*A(I+2,J)
IF (.NOT.WANTX) GO TO 310
DO 300 K=I,N
X(K,I) = X(K,I) - Z*X(K,J)

300 CONTINUE
- 310 CONTINUE

GO TO 60
320 CONTINUE

EIGA(NN) = A(NN,NN)
EIGB(NN) = B(NN,NN)
IF (NN.EQ.I) GO TO 330
ITER(NN) = ITS
NN = NM1
IF (NN.GT.I) GO TO 50
ITER(1) = 0
GO TO 320

C FIND EIGENVECTORSUSING B FOR INTERMEDIATESTORAGE
330 IF (.NOT.WANTX) RETURN

M = N
340 CONTINUE

ALFM = A(M,M)
BETM = B(M,M)
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B(M,M) = (1.0,0.0)
L=M-1

IF (L.EQ.O) GO TO 370
350 CONTINUE

LI=L+I
SL-- (0.0,0.0)
DO 360 J=LI,M

SL = SL * (BETM*A(L,J)-ALFM*B(L,J))*B(J,M)
360 CONTINUE

Y = BETM*A(L,L) - ALFM*B(L,L)
IF (REAL(Y).EQ.O.O .AND. AIMAG(Y).EQ.O.O) Y =

• CHPLX((EPSA+EPSB) 12. O, 0.0)
B(L,N) = -SL/Y
L-L-1

370 IF (L.GT.O) GO TO 350
M=N-I

IF (N.GT.O) GO TO 340
C TRANSFORN TO ORIGINAL COORDINATE SYSTEM

N=N
38O CONTINUE

DO 400 I=I,N
S-- (O.O,O.O)
DO 390 J=l,N

S = S + X(I,J)*B(J,M)
390 CONTINUE

X(I,M) -- S
400 CONTINUE

M=M-1
IF (N.GT.O) GO TO 380

C NORMALIZE SO THAT LARGEST COMPONENT= 1.
N=N

410 CONTINUE
SS=O.
DO 420 I=I,N

R = ABS(REAL(X(I,N))) + ABS(AIMAG(X(I,M)))
IF (R.LT.SS) GO TO 420
SS=R
O = X(I,M)

420 CONTINUE
IF (SS.EQ.O.O) GO TO 440
DO 430 I=I,N

X(I,M) = X(I,M)/D
430 CONTINUE
44ON=N-1

IF (N.GT.O) GO TO 410
RETURN
END

SUBROUTINE LZHES(N, A, NA, B, NB, X, NX, WANTX)
C THIS SUBROUTINE REDUCES THE COMPLEX MATRIX A TO UPPER
C HESSENBERG FORM AND REDUCES THE COMPLEX MATRIX B TO
C TRIANGULAR FORM

C INPUT PARAMETERS..
C N THE ORDER OF THE A AND B MATRICES
C A A COMPLEX MATRIX

C NA THE ROW DIMENSION OF THE A MATRIX
C B A COMPLEX MATRIX

C NB THE ROW DIMENSION OF THE B MATRIX
C NX THE ROW DIMENSION OF THE X MATRIX

LZH I0
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C WANTX A LOGICAL VARIABLE WHICH IS SET TO .TRUE. IF
C THE EIGENVECTORS ARE WANTED. OTHERWISE IT SHOULD
C BE SET TO .FALSE.
C OUTPUT PARAMETERS..
C A ON OUTPUT A IS AN UPPER HESSENBERG MATRIX, THE
C ORIGINAL MATRIX HAS BEEN DESTROYED
C B AN UPPER TRIANGULAR MATRIX, THE ORIGINAL MATRIX
C HAS BEEN DESTROYED
C X CONTAINS THE TPJ_NSFORMATIONSNEEDED TO COMPUTE
C THE EIGENVECTORS OF THE ORIGINAL SYSTEM

COMPLEX Y, W, Z, A(NA,N), B(NB,N), X(NX,N)
REAL C, D
LOGICAL WANTX
NMI = N - 1

C REDUCE B TO TRIANGULAR FORM USING ELEMENTARY
C TRANSFORMATIONS

DO 80 I=I,NMI
D = O.OO
IPI = I ÷ I

DO I0 K=IPI,N
Y = B(K,I)
C = ABS(REAL(Y)) • ABS(AIMAG(Y))
IF (C.LE.D) GO TO 10
D = C
II = K

I0 CONTINUE
IF (D.EQ.O.O) GO TO 80
v = B(I,I)
IF (D.LE.ABS(REAL(Y))+ABS(AIMAG(Y)))GO TO 40

C MUST INTERCHANGE
DO 20 J=I,N

Y = A(I,J)
A(I,J) = A(II,J)
A(II,J) = Y

20 CONTINUE

DO 30 J=I,N
Y = B(I,J)
B(I,J) = B(II,J)
B(II,J) = Y

30 CONTINUE

40 DO 70 J=IPI,N
Y = B(J,I)/B(I,I)
IF (REAL(Y).EQ.O.O .AND. AIMAG(Y).EQ.O.O) GO TO 70
DO 50 K=I,N
A(J,K) = A(J,K) - Y*A(I,K)

50 CONTINUE
DO 60 K=IP1,N

B(J,K) = B(J,K) - Y*B(I,K)
60 CONTINUE
70 CONTINUE

B(IPI,I) = (O.O,O.O)
80 CONTINUE

C INITIALIZE X
IF (.NOT.WANTX) GO TO 110
DO IO0 I=I,N

DO 90 J=I,N
X(I,J) = (O.O,O.O)

90 CONTINUE
X(I,I) = (1.0,0.00)

100 CONTINUE
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C REDUCE A TO UPPER HESSENBERG FORM
110 NM2 = N - 2

IF (NM2.LT.]) GO TO 270
DO 260 J=I,NM2

JM2 = NM1 - J
JP] = j + |
DO 25O II=I,JM2

I=N+I-II
IMI = I - I
IMJ = I - J
W = A(I,J)
Z = A(IMI,J)
IF (ABS(REAL(W))+ABS(AIMAG(W)).LE.ABS(REAL(Z))

* +ABS(AIMAG(Z))) GO TO 140
C MUST INTERCHANGE ROWS

DO 120 K=J,N
Y - A(I,K)
A(I,K) = A(IMI,K)
A(IMI,K) - Y

120 CONTINUE
DO 130 K=IMI,N

Y = B(I,K)
B(I,K) = B(IM1,K)
8(IMI,K) --Y

130 CONTINUE
140 Z = A(I,J)

IF (REAL(Z).EQ.O.O .AND. AIMAG(Z).EQ.O.O) GO TO 170
Y = Z/A(IMI,J)
DO 150 K=JPI,N

A(I,K) = A(I.K) - Y*A(IMI,K)
150 CONTINUE

DO 160 K=IM1,N
B(I,K) - B(I,K) - Y"B(IM1,K)

160 CONTINUE
c TRANSFORMATIONFROMTHERIGHT

170 W = B(I,IM1)
z - B(I,I)
IF (ABS(REAL(W))+ABS(AIMAG(W)).LE.ABS(REAL(Z))

* +ABS(AIMAG(Z))) GO TO 210
C MUST INTERCHANGE COLUMNS

DO 180 K=I.I
Y = B(K,I)
B(K,I) = B(K,IMI)
B(K,IM1) = Y

180 CONTINUE
DO 190 K=I,N

Y = A(K,I)
A(K,I) = A(K,IMI)
A(K,IM1) = Y

190 CONTINUE
IF (.NOT.WANTX)GO TO 210
DO 200 K=IMJ,N

V --X(K,I)
X(K,I) = X(K,IMI)
X(K,IMI) = Y

200 CONTINUE
210 Z - B(I,IMI)

IF (REAL(Z).EQ.O.O .AND. AIMAG(Z).EQ.O.O) GO TO 250
Y - Z/B(I,I)
DO 220 K=I,IMI
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B(K,IMI) - B(K,IMI) - Y*B(K,I)
22O CONTINUE

B(I,IM1) = (0.0,0.0)
DO 230 KfI.N

A(K, IMI) = A(K, IM1) - Y*A(K,I)
23O CONTINUE

IF (.NOT.WANTX) GO TO 250
DO 240 K=IMJ,N

X(K,IMI) = X(K,IMI) - Y*X(K,I)
24O CONTINUE
25O CONTINUE

A(JPI+I,J) = (0.0,0.0)
260 CONTINUE
27O RETURN

END

C
C
C

C

C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

SUBROUTINE CQZHES(NM,N,AR,AI,BR,BI,MATZ,ZR,ZI)

INTEGER I,J,K,L,N,K1,LB,LI,NM,NKI,NMI
REAL AR(NM,N),AI(NM,N),BR(NM,N),BI(NM,N),ZR(NM,N),ZI(NM,N)

REAL AR(500,500),AI(500,500),BR(500,500),BI(500,500)
REAL ZR(500,SOO),ZI(500,500)
REAL R,S,T,TI.U1,U2,XI,XR,YI,YR.RHO,UII
REAL SQRT,CABS,ABS
LOGICAL NATZ
COMPLEXCMPLX

THIS SUBROUTINEIS A COMPLEXANALOGUEOF THE FIRST STEP OF THE
QZ ALGORITHMFORSOLVING GENERALIZEDMATRIX EIGENVALUEPROBLEMS,
SIAM J. NUMER. ANAL. 10, 241-256(1973) BY NOLERAND STEWART.

THIS SUBROUTINE ACCEPTS A PAIR OF COMPLEX GENERAL MATRICES AND

REDUCES ONE OF THEM TO UPPER HESSENBERG FORM WITH REAL (AND NON-
NEGATIVE) SUBDIAGONAL ELEMENTS AND THE OTHER TO UPPER TRIANGULAR
FORM USING UNITARY TRANSFORMATIONS. IT IS USUALLY FOLLOWED BY

CQZVAL AND POSSIBLY CQZVEC.

ON INPUT-

NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL
ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM

DIMENSION STATEMENT,

N IS THE ORDER OF THE MATRICES,

A=(AR,AI) CONTAINS A COMPLEX GENERAL MATRIX.

B=(BR,BI) CONTAINS A COMPLEX GENERAL MATRIX,

MATZ SHOULD BE SET TO .TRUE. IF THE RIGHT HAND TRANSFORMATIONS
ARE TO BE ACCUMULATED FOR LATER USE IN COMPUTING
EIGENVECTORS, AND TO .FALSE. OTHERWISE.

ON OUTPUT-

HES
-HES
HES
HES

lO
2O
3O
4O
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A HAS BEEN REDUCED TO UPPER HESSENBERG FORM. THE ELEMENTS
BELOW THE FIRST SUBDIAGONAL HAVE BEEN SET TO ZERO, AND THE
5UBDIAGONAL ELEMENTS HAVE BEEN MADE REAL (AND NON-NEGATIVE),

B HAS BEEN REDUCED TO UPPER TRIANGULAR FORM. THE ELEMENTS

BELOW THE MAIN DIAGONAL HAVE BEEN SET TO ZERO,

Z=(ZR,ZI) CONTAINS THE PRODUCT OF THE RIGHT HAND
TRANSFORMATIONS IF MATZ HAS BEEN SET TO .TRUE.
OTHERWISE, Z IS NOT REFERENCED.

QUESTIONS AND COMMENTS SflOULDBE DIRECTED TO B. S. GARBOW,
APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY

*****'**** INITIALIZE Z **********
IF (.NOT. MATZ) GO TO 10

DO31=I,N

2

DO2J = I, N
ZR(I,,1) = 0.0
Zi(l,J)= o.o

CONTINUE

ZR(I,I)= 1.0
3 CONTINUE

*'******** REDUCE B TO UPPER TRIANGULAR FORM WITH
TEMPORARILY REAL DIAGONAL ELEMENTS **********

10 IF (N .LE. 1) 60 TO 170
NMI = N - I

DO 100 L - I, NMI
LI=L+I
S=0.0

2O

DO 20 I = L, N
S = S + ABS(BR(I,L)) + ABS(BI(I,L))

CONTINUE

IF (S .EQ. 0.0) GO TO 100
RHO= 0.0

25

DO 25 I = L, N
BR(I,L) = BR(I,L) / S
BI(I,L) = BI(I,L) / S
RHO = RHO + BR(I,L)**2 + BI(I,L)**2

CONTINUE

R = SQRT(RHO)
XR = CABS(CMPLX(BR(L,L),BI(L,L)))
IF (XR .EQ. 0.0) GO TO 27
RHO= RHO+ XR * R
U1 = -BR(L,L) / XR
UII = -BI(L,L) / XR
YR = R / XR + 1.0

BR(L,L) YR _ BR(L,L)
BI(L,L) =-YR BI(L,L)

GO TO 28
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C

C
C

27 BR(L,L) = R
Ul = -1.0
UII = 0.0

28 DO 50 J = L1, N
T=O.O
TI= 0.0

30

DO30 I = L, N
T = T + BR(I,L) * BR(I,J) + BI(I,L) * BI(I,J)
TI = TI + BR(I,L) * BI(I,J) - BI(I,L) * BR(I,J)

CONTINUE

T = T / RHO
TI = TI / RHO

40

DO 40 I = L, N
BR(I,J) = BR(I,O) - T * BR(I,L) + TI * BI(I,L)
BI(I,J) = BI(I,J) - T * BI(I,L) - TI * BR(I,L)

CONTINUE

50

XI = U1 * BI(L,O) - UII * BR(L,J)
BR(L,J) = U1 * BR(L,J) + UlI * BI(L,O)
BI(L,J) = XI

CONTINUE

DO 80 O = I, N
T = 0.0
TI = 0.0

60

DO60 I= L, N
T = T + BR(I,L) * AR(I,J) + BI(I,L) * AI(I,J)
TI = TI BR(I,L) * AR(I,J)+ * AI(I,J) - BI(I,L)

CONTINUE

T = T / RHO
TI = TI / RHO

70

80

DO 70 I = L, N

: ÷ :AI(I,J AI(I,J) T BI(I,L - TI BR(I,L)
CONTINUE

XI = U1 * AI(L,J) - UlI * AR(L,J)
AR(L,J) = UI * AR(L,J) + Ull * AI(L,J)
AI(L,J) = XI

CONTINUE

BR(L,L) = R * S
BI(L,L) = 0.0

90

DO 90 I = LI, N
BR(I,L) = 0.0
BI(I,L) = 0.0

CONTINUE

100 CONTINUE
********** REDUCE A TO UPPER HESSENBERG FORM WITH REAL SUBDIAGONAL

ELEMENTS, WHILE KEEPING B TRIANGULAR **********
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C

C

C

103

105

110

DO 160 K = 1, NN1
KI=K+I

********** SET BOTTOMELEMENTIN K-TH COLUMNOF A REAL**********
IF (AI(N,K) .EQ. 0.0) GO TO 105
R = CABS(CMPLX(AR(N, K), AI (N, K) ) )
U1 = AR(N,K) / R
UII = AI(N,K) / R
AR(N,K) = R
AI(N,K) = 0.0

DO 103 J = K1, N
XI = U] * AI(N,J) - U]I * AR(N,J)
AR(N,J) = U1 * AR(N,J) + UII * AI(N,J)
AI(N,J) = XI

CONTINUE

XI - U] * BI(N,N) - UII * 8R(N.N)
BR(N,N) = UI * BR(N,N) + Ull * BI(N,N)
BI(N,N) = XI
IF (K .EQ. NM1) GO TO 170
NKI = NMI - K

• ********* FOR L=N-1 STEP -1 UNTIL K+I DO -- **********
DO 150 LB = I, NKI

L'N-LB
LI=L+I

•********* ZERO A(L+I,K) **********
S = ABS(AR(L,K)) + ABS(AI(L,K)) + AR(L1,K)
IF (S .EQ. 0.0) GO TO 150
U1 ,: AR(L,K) / S

UII=- AI(L,K) / S
U2 AR(LI,K) / S
R = SQRT(UI*UI+UII*UII+U2*U2)
U1 ,- U1 / R
UII = UI.I / R
U2 ,_ U2 / R
AR(L,K) = R * S
AI(L,K) = 0.0
AR(L],K) = 0.0

DO 110 J = K1, N
XR = AR(L,J)
XI = AI(L,O)

AR(LI,J)
YR _ AI(LI,J)YI

AR(L,J) - UI * XR + UII * XI + U2 * YR
AI(L,J) = U1 * XI - UII * XR + U2 * YI
AR(LI,J) = UI * YR - U]I * YI - U2 * XR
AI(LI,J) - UI * Y! + UII * YR - U2 * XI

CONTINUE

XR = BR(L,L)
BR(L,L) = U1 * XR
BI(L,L) = -UII * XR
BR(LI,L) = -U2 * XR

DO 120 J = L1, N
XR = BR(L,O)
XI = BI(L,J)
YR = BR(LI,_)
YI = BI(LI,J)
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C

C

120

BR(L,J) = UI * XR + UII * XI + U2 * YR
BI(L,J) = UI * XI - UII * XR + U2 * YI
BR(LI,J) = UI * YR - UII * YI - U2 * XR
BI(LI,J) = UI * YI ÷ UII * YR - U2 * XI

CONTINUE
•********* ZERO B(L+I,L) **********

S = ABS(BR(LI,LI)) + ABS(BI(LI,LI)) + ABS(BR(LI,L))
IF (S .EQ. 0.0) GO TO 150
UI = BR(LI,LI) / S
UII = BI(LI,L1) / $
U2 = BR(L1,L) / S
R = SQRT(UI*UI+UII*UII÷U2*U2)
U1 = UI / R
UII = UII / R
U2 = U2 / R
BR(LI,L]) = R * S
BI(LI,LI) = 0.0
BR(LI,L) = 0.0

130

DO 130 I = 1, L
XR = BR(I,LI)
XI = BI(I,LI)
YR = BR(I,L)
YI = BI(I,L)
BR(I,LI) = UI * XR + UII * XI + U2 * YR
BI(I,LI) - UI * XI - UII * XR + U2 * YI
BR(I,L) - UI * YR - Ull * YI - U2 * XR
BI(I,L) = UI * YI + UII * YR - U2 * XI

CONTINUE

140

DO 140 1 ffi 1, N
XR = AR(I,LI)
XI = AI(I,LI)
YR " AR(I,L)
YI = AI(I,L)
AR(I,L1) = UI * XR + UII * XI + U2 * YR
AI(I,LI) = UI * XI - UII * XR + U2 * YI
AR(I,L) = UI * YR - UII * YI - U2 * XR
AI(I,L) - UI * YI + UII * YR - U2 * XI

CONTINUE

IF (.NOT. MATZ) GO TO 150

145

DO 145 I : I, N
XR : ZR(I,LI)
XI : ZI(I,LI)
YR = ZR(I,L)
YI = ZI(I,L)
ZR(I,LI) = U1 * XR + UII * Xl + U2 * YR
ZI(I,LI) = UI * XI - UII * XR + U2 * YI
ZR(I,L) = UI * YR - UII * YI - U2 * XR
ZI(I,L) = UI * YI + UII * YR - U2 * XI

CONTINUE

150 CONTINUE

160 CONTINUE

170 RETURN
********** LAST CARD OF CQZHES **********
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END
VAL I0
VAL 20

• k

C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

SUBROUTINE CQZVAL(NM,N,AR,AI,BR,BI,EPSI,ALFR,ALFI,BETA,
X MATZ,ZR,ZI,IERR)

INTEGER I,J,K,L,N,EN,KI,K2,LL,LI,NA,NM,ITS,KMI,LM1,
X ENM2,IERR,LOR1,ENORN
REAL AR(NM,N),AI(NM,N),BR(NM,N),BI(NM,N),ALFR(N),ALFI(N),

X BETA(N),ZR(NM,N),ZI(NM,N)
REAL R,S,A1,A,?.,EP,SH,UI,U2,XI,XR,YI,YR,ANI,

*AlI,A33,A34,A43,A44,
X BNI,BI1,B33,B44,SHI,UII,A33I,A34I,A43I,A44I,B33I,B44I,
X EPSA,EPSB,EPSI,ANORM,BNORM,B3344,B3344I
REAL SQRT,CABS,ABS
INTEGERMAXO
LOGICALMATZ
COMPLEXZ3
COMPLEXCSQRT,CMPLX
REAL REAL,AIMAG

THIS SUBROUTINEIS A COMPLEXANALOGUEOF STEPS Z AND 3 OF THE
QZ ALGORITHMFORSOLVING GENERALIZEDMATRIX EIGENVALUEPROBLEMS,
SIAM J. NUMER. ANAL. 10, 241-256(1973) BY MOLERAND STEWART,
AS MODIFIED IN TECHNICALNOTE NASATN E-7305(1973) BY WARD.

THIS SUBROUTINEACCEPTSA PAIR OF COMPLEXMATRICES, ONE OF THEM
IN UPPERHESSENBERGFORMAND THE OTHER IN UPPERTRIANGULARFORM,
THE HESSENBERGMATRIX MUST FURTHERHAVEREAL SUBDIAGONALELEMENTS.
IT REDUCESTHE HESSENBERGMATRIX TO TRIANGULARFORMUSING
UNITARY TRANSFORMATIONSWHILE MAINTAINING THE TRIANGULARFORM
OF THE OTHERMATRIX AND FURTHERMAKING ITS DIAGONALELEMENTS
REAL ANDNON-NEGATIVE. IT THEN RETURNSQUANTITIES WHOSERATIOS
GIVE THE GENERALIZEDEIGENVALUES. IT IS USUALLYPRECEDEDBY
CQZHES AND POSSIBLY FOLLOWEDBY CQZVEC.

ON INPUT-

NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL
ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM

DIMENSION STATEMENT,

N IS THE ORDER OF THE MATRICES,

A=(AR,AI) CONTAINS A COMPLEX UPPER HESSENBERG MATRIX
WITH REAL SUBDIAGONAL ELEMENTS,

B=(BR,BI) CONTAINS A COMPLEX UPPER TRIANGULAR MATRIX,

EPS1 IS A TOLERANCEUSEDTO DETERMINENEGLIGIBLE ELEMENTS.
EPSI = 0.0 (OR NEGATIVE) MAY BE INPUT, IN WHICH CASEAN
ELEMENTWILL BE NEGLECIEDONLY IF IT IS LESS THAN ROUNDOFF
ERRORTIMES THE NORMOF ITS MATRIX. IF THE INPUT EPS1 IS
POSITIVE, THEN AN ELEMENTWILL BE CONSIDEREDNEGLIGIBLE
IF IT IS LESS THANEPS1 TIMES THE NORMOF ITS MATRIX. A

VAL
VAL

30
4O
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C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

POSITIVE VALUE OF EPSI MAY RESULT IN FASTER EXECUTION,
BUT LESS ACCURATE RESULTS,

MATZ SHOULD BE SET TO .TRUE. IF THE RIGHT HAND TRANSFORMATIONS
ARE TO BE ACCUMULATED FOR LATER USE IN COMPUTING
EIGENVECTORS, AND TO .FALSE. OTHERWISE,

Z=(ZR,ZI) CONTAINS, IF MATZ HAS BEEN SET TO .TRUE., THE
TRANSFORMATION MATRIX PRODUCED IN THE REDUCTION
BY CQZHES, IF PERFORMED, OR ELSE THE IDENTITY MATRIX.
IF MATZ HAS BEEN SET TO .FALSE., Z IS NOT REFERENCED.

ON OUTPUT-

A HAS BEEN REDUCED TO UPPER TRIANGULAR FORM. THE ELEMENTS

BELOW THE MAIN DIAGONAL HAVE BEEN SET TO ZERO,

B IS STILL IN UPPER TRIANGULAR FORM, ALTHOUGH ITS ELEMENTS
HAVE BEEN ALTERED. IN PARTICULAR, ITS DIAGONAL HAS BEEN SET
REAL AND NON-NEGATIVE. THE LOCATION BR(N,I) IS USED TO
STORE EPSI TIMES THE NORM OF B FOR LATER USE BY CQZVEC,

ALFR AND ALFI CONTAIN THE REAL AND IMAGINARY PARTS OF THE
DIAGONAL ELEMENTS OF THE TRIANGULARIZED A MATRIX,

BETA CONTAINS THE REAL NON-NEGATIVE DIAGONAL ELEMENTS OF THE
CORRESPONDING B. THE GENERALIZED EIGENVALUES ARE THEN
THE RATIOS ((ALFR+I*ALFI)/BETA),

Z CONTAINSTHE PRODUCTOF THE RIGHT HANDTRANSFORMATIONS
(FOR BOTHSTEPS) IF MATZ HAS BEEN SET TO .TRUE..

IERR IS SET TO
ZERO FOR NORMALRETURN,
J IF AR(J,J-I) gAS NOT BECOME

ZERO AFTER 50 ITERATIONS.

QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO B. S. GARBOW,
APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY

IERR = 0
********** COMPUTE EPSA,EPSB **********
ANORM = 0.0
BNORM = 0.0

DO 30 I = I, N
ANI = O.O
IF (I .NE. 1) ANT = ABS(AR(I,I-I))
BNI = O.O

20

DO 20 J = I, N
ANT = ANT + ABS(AR(I,3)) + ABS(AI(I,J))
BNI = BNI + ABS(BR(I,J)) + ABS(BI(I,J))

CONTINUE

IF (ANI .GT. ANORM) ANORM = ANI
IF (BNI .GT. BNORM) BNORM = BNI

30 CONTINUE
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IF (ANORM .EQ. 0.0) ANORM = 1.0
IF (BNORH .EQ. 0.0) BNORH = 1.0
EP = EPS1

IF (EP .GT. 0.0) GO TO 50
C ********** COMPUTE ROUNDOFF LEVEL IF EPSI IS ZERO **********

EP = 1.0
40 EP = EP / 2.0

IF (1.0 + EP .GT. 1.0) GO TO 40
50 EPSA = EP * ANORM

EPSB = EP * BNORH
C ********** REDUCE A TO TRIANGULAR FORM, M4ILE
C KEEPING B TRIANGULAR **********

LOR1 = 1
ENORN = N
EN=N

C ********** BEGIN QZ STEP **********
60 IF (EN .EQ. O) GO TO 1001

IF (.NOT. HATZ) ENORN = EN
ITS = 0
NA = EN - 1
ENH2 = NA - 1

C ********** CHECK FOR CONVERGENCEOR REDUCIBILITY.
C FOR L=EN STEP "1 UNTIL 1 DO -- **********

70 DO 80 LL = 1, EN
LR1 ,, EN - LL
L=INZ+I

IF (L .EQ. 1) GO TO 95
IF (ABS(AR(L, IJ41)) .LE. EPSA) GO TO 90

CONTINUE80

90

95

97
C

AR(L,I.M1) = 0.0
********** SET DIAGONAL ELEHENT AT TOP OF B REAL **********
Bll = CABS(CMPLX(BR(L,L),BI(L,L)))
IF (B11 .EQ. 0.0) GO TO 98
OZ - BR(L,L) / B11
UII = BI(L,L) / Bll

DO 97 J = L, ENORN
XZ = UX * AI(L,J) - UlI * AR(L,J)
AR(L,J) = U1 * AR(L,J) + Ul1 * AI(L,O)
AI(L,J) = XI
XI = U1 * BI(L,J) - UII * BR(L,J)
BR(L,J) = UZ * BR(L,J) + UZI * BI(L,J)
BE(L°J) = XI

CONTINUE

BI(L,L) = 0.0
98 IF (L .NE. EN) GO TO 100

C ********** 1-BY-1 BLOCK ISOLATED **********

ALFR(EN) = AR(EN,EN)
ALFI(EN) = AI(EN,EN)
BETA(EN) = Bll
EN = NA
GO TO 60

C ********** CHECK FOR SHALL TOP OF B **********
100 LI = L + 1

IF (Bll .GT. EPSB) GO TO 120
BR(L,L) = 0.0
S = ABS(AR(L,L)) + ABS(AI(L,L)) + ABS(AR(L1,L))
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C

110
C

C
120

C

122

124

UI = AR(L,L) / S
UII = AI(L,L) / S
U2 = AR(LI,L) / S
R = SQRT(UI*UI+UII*UII+U2*U2)
UI = UI / R
UII = UII / R
U2 = U2 / R
AR(L,L) = R * S
AI(L,L) = 0.0

DO 110 J = LI, ENORN
XR = AR(L,J)
Xl = AI(L,J)
YR = AR(LI,J)
YI = AI(L1,J)
AR(L,J) = UI * XR + UII * XI + U2 * YR
AI(L,J) = UI * XI - UII * XR + U2 * YI
AR(LI,J) = UI * YR - UII * YI - U2 * XR
AI(LI,J) = U1 * YI + UII * YR - U2 * XI
XR = BR(L,J)
XI = BI(L,J)
YR = BR(LI,J)
YI = BI(LI,J)
BR(LI,J) = Ul * YR - UII * YI - U2 * XR
BR(L,J) = Ul * XR + UII * XI + U2 * YR
BI(L,J) = UI * XI - UII * XR + U2 * YI
BI(LI,J) = UI * YI + UlI * YR - U2 * XI

CONTINUE

LMI=L
L=LI
GO TO 90
********** ITERATION STRATEGY **********
IF (ITS .EQ. 50) GO TO I000
IF (ITS.EO.]0)Go TO 135
********** DETERMINE SHIFT **********
B33 ,=BR(NA,NA)
8331 --BI(NA,NA)
IF (CABS(CMPLX(B33,B331)) .GE. EPSB) GO TO 122
B33 = EPSB
B331 = 0.0

B44 = BR(EN,EN)
B44I = BI(EN,EN)
IF (CABS(CMPLX(B44,BA4I)) .GE. EPSB) GO TO 124
844 = EPSB
8441 = 0.0
83344 = 833 _ 844 - B33I * B441
B33441 = 833 * 8441 + 8331 * 844

A33 = AR(NA,NA) * 1344- AI(NA,NA) * 8441
A331 = AR(NA,NA) * 8441 + AI(NA,NA)* B44
A34 = AR(NA,EN) * 833 - AI(NA,EN) * 8331
X - AR(NA,NA) * BR(NA,EN) + AI(NA,NA) * BI(NA,EN)
A34I = AR(NA,EN) * 8331 + AI(NA,EN) * B33
X - AR(NA,NA) * BI(NA,EN) - AI(NA,NA) * BR(NA,EN)
A43 = AR(EN,NA) * 1344
A43I = AR(EN,NA) * 844I
A44 = AR(EN,EN) * B33 - AI(EN,EN) * 8331 - AR(EN,NA) * BR(NA,EN)
A44I = AR(EN,EN) * 833I + AI(EN,EN) * B33 - AR(EN,NA) * BI(NA,EN)
SH = A44
SHI ,,A441
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XR = A34 * A43 - A341 * A43I
XI = A34 * A43I + A34I * A43
IF (XR .EQ. 0.0 .AND. XI .EQ. 0.0) GO TO 140
YR = (A33 - SH) I 2.0
Y1 = (A331- SIll)/ 2.0
Z3 = CSQRT(CMPLX(YR**2°YI**2+XR,2.0*YR*YI+XI))
Ul = REAL(Z3)
UII = AIMAG(Z3)
IF (YR * UI + YI * UII .GE. 0.0) GO TO 125
UI = -U!
UII = -UII

125 Z3 = (CMPLX(SH,SHI) - CMPLX(XR,XI) I CMPLX(YR+UI,YI+Ull))
X / CNPLX(B3344, B3344I)
SH = REAL(Z3)
SHI - AIWkG(Z3)
GO TO 140
• ********* AD HOCSHIFT **********

135 SH = AR(EN,NA) + AR(NA,ENM2)
SHI -- 0.0
• ********* DETERMINEZEROTHCOLUI4NOF A **********

140 A] = AR(L,L) / B11 ° SH
AII= AI(L,L) / Bll - SHI
A2 = AR(L1,L) / Bll
ITS = ITS + I
IF (.NOT. MATZ) LORI = L
• ********* NAIN LOOP**********
DO 260 K = L, NA

KI=K+I
K2=K+2
KN1 = NAXO(K-],L)

• ********* ZERO A(K+I,K-I) **********
IF (K .EQ. L) GO TO I/O
A1 = AR(K, KH1)
AII= AI(K, KMI)
A2 = AR(K1,KN1)

170 S = ABS(AI) + ABS(AII) + ABS(A2)
UI =AI / S
UII = All / S
U2=A2/S
R = SQRT(UI*UI+UII*UII+U2*U2)
UI = UI / R
UII = UII / R
U2 = U2 / R

DO 180 J = KMI, ENORN
XR = AR(K,J)
XI = AI(K,J) -
YR = AR(KI,J)
YI = AI(KI,J)
AR(K,J) = UI * XR + U]I * XI + U2 * YR
AI(K,J) = U1 * XI - UII * XR + U2 * YI
AR(K],J) = U] * YR - UII * YI - U2 * XR
AI(KI,J) = UI * YI + UII * YR - U2 * XI
XR = BR(K,J)
XI = BI(K,J)
YR BR(KI,J)
YI ) BI(KI,J)

BR(K,J) = Ul * XR + UII * XI + U2 * YR
BI(K,J) = UI * XI - UII * XR + U2 * YI
BR(KI,J) = UI * YR - UII * YI - U2 * XR
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C

C

180

240

245

250

BI(KI,J) = UI * YI + UII * YR - U2 * XI
CONTINUE

IF (K .EQ. L) GO TO 240
AI(K,KMI) = 0.0
AR(KI,KMI) = 0.0
AI(KI,KMI) = 0.0

********** ZERO B(K+I,K) **********
S = ABS(BR(KI,K1)) + ABS(BI(KI,KI)) + ABS(BR(KI,K))
U] = BR(KI,KI) / S
UII = BI(KI,KI) / S
U2 = BR(KI,K) / S

R = SQRT(UI*UI+UII*UII+U2*U2)
UI = UI / R
UII = UII / R
U2 = U2 / R
IF (K .EQ. NA) GO TO 245
XR = AR(K2,KI)
AR(K2,K]) = UI * XR
AI(K,?.,KI)= -UII * XR
AR(K2,K) = -U2 * XR

DO 250 I = LORI, KI
XR = AR(I,K1)
Xl = AI(I,KI)
YR = AR(I,K)
YI= AZ(Z,K)
AR(I,KI) = UI * XR + UlI * XI + U2 * YR
AI(I,KI) = Ul * XI - UII * XR + U2 * YI
AR(I,K) = UI * YR - UII * YI - U2 * XR
AI(I,K) = UI * YI + UII * YR - U2 * XI
XR = BR(I,KI)
XI = BI(I,KI)
YR = BR(I,K)
YI = BI(I,K)
BR(I,KI) = UI * XR + UII * XI + U2 * YR
BI(I,KI) = UI * Xl - UII * XR + U2 * YI
BR(I,K) = UI * YR - UII * YI - U2 * XR
BI(I,K) = UI * YI + UII * YR - U2 * XI

CONTINUE

BI(KI,KI) = 0.0
BR(KI,K) = 0.0
BI(KI,K) = 0.0
IF (.NOT. MATZ) GO TO 260

255

I)0255 I = I, N
XR = ZR(I,K1)
XI = ZI(I.K1)
YR = ZR(I,K)
YI = ZI(I,K)
ZR(I,KI) = UI * XR + UII * XI + U2 * YR
ZI(I,KI) = UI * XI - U]I * XR + U2 * YI
ZR(I,K) = U] * YR - UII * YI - U2 * XR
ZI(I,K) = UI * YI + UII * YR - U2 * XI

CONTINUE

26O CONTINUE

********** SET LAST A SUBDIAGONAL REAL AND END QZ STEP **********
IF (AI(EN,NA) .EQ. 0.0) GO TO 70
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270
C

C
C
1000

C
lO01

C

R = CABS(CMPLX(AR(EN,NA),AI(EN,NA)))
UI = AR(EN,NA) / R
UII = AI(EN,NA) / R
AR(EN,NA) = R
AI(EN,NA) = 0.0

DO 270 J = EN, ENORN
XI : U! * AI(EN,J) - UII * AR(EN,_)
AR(EN,J) = UI * AR(EN,J) + UII * AI(EN,J)
AI(EN,J) = XI
XI - U! * BI(EN,J) - UII * BR(EN,J)
BR(EN,J) = UI * BR(EN,J) + UII * BI(EN,3)
BI(EN,J) = XI

CONTINUE

GO TO 70
********** SET ERROR -- BOTTOM SUBDIAGONAL ELEMENT HAS NOT

BECOME NEGLIGIBLE AFTER 50 ITERATIONS **********
IERR = EN
********** SAVE EPSB FOR USE BY CQZVEC **********
IF (N .GT. 1) BR(N,1) = EPSB
RETURN
********** LAST CARDOF CQZVAL**********
END

VEC
...........VEC

SUBROUTINE CQZVEC(NM,N,AR,AI,BR,BI,ALFR,ALFI,BETA,ZR,ZI)

INTEGER I,O,K,M,N,EN,II,Jj,NA,NH,NN
REAL AR(NM,N),AI(NM,N),BR(NN,N),BI(NM,N),ALFR(N),ALFI(N),

X BETA(N),ZR(NM,N),ZI(NM,N)
REAL R,T,RI,TI,XI,AIJ41,ALMR,BETH,EPSB
REAL CABS,T5
COMPLEXZ3,T6
COMPLEXCHPLX
REALREAL,AIMAG

VEC
VEC

THIS SUBROUTINEIS A COMPLEXANALOGUEOF THE FOURTHSTEP OF THE
QZ ALGORITHMFOR SOLVING GENERALIZEDMATRIX EIGENVALUEPROBLEMS,
SIAM J. NUMER. ANAL. 10, 241-256(1973) BY MOLER AND STEWART.

THIS SUBROUTINE ACCEPTS A PAIR OF COMPLEX MATRICES IN UPPER
TRIANGULAR FORM, WHERE ONE OF THEM FURTHER MUST HAVE REAL DIAGONAL
ELEMENTS. IT COMPUTES THE EIGENVECTORS OF THE TRIANGULAR PROBLEM
AND TRANSFORMS THE RESULTS BACK TO THE ORIGINAL COORDINATE SYSTEM.
IT IS USUALLY PRECEDED BY CQZHES AND CQZVAL.

ON INPUT-

NH MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL
ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM
DIMENSION STATEMENT,

N IS THE ORDER OF THEM ATRICES,

10
2O
30
40
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A=(AR,AI) CONTAINS A COMPLEX UPPER TRIANGULAR MATRIX,

B=(BR,BI) CONTAINS A COMPLEX UPPER TRIANGULAR MATRIX WITH REAL
DIAGONAL ELEMENTS. IN ADDITION, LOCATION BR(N,I) CONTAINS
THE TOLERANCE QUANTITY (EPSB) COMPUTED AND SAVED IN CQZVAL,

ALFR, ALFI, AND BETA ARE VECTORS WITH COMPONENTS WHOSE
RATIOS ((ALFR+I*ALFI)/BETA)ARE THE GENERALIZED
EIGENVALUES. THEY ARE USUALLY OBTAINED FROM CQZVAL,

Z=(ZR,ZI) CONTAINS THE TRANSFORMATION MATRIX PRODUCED IN THE
REDUCTIONS BY CQZHES AND CQZVAL, IF PERFORMED.
IF THE EIGENVECTORS OF THE TRIANGULAR PROBLEM ARE
DESIRED, Z MUST CONTAIN THE IDENTITY MATRIX.

ON OUTPUT-

A IS UNALTERED,

B HAS BEEN DESTROYED,

ALFR, ALFI, AND BETA ARE UNALTERED,

Z CONTAINS THE EIGENVECTORS. EACH EIGENVECTOR IS NORMALIZED
SO THAT THE MODULUS OF ITS LARGEST COMPONENT IS 1.0 .

QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO B. S. GARBOW,
APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY

605

610

IF (N .LE. I) GO TO 1001
EPSB = BR(N,I)
********** FOR EN=N STEP -1 UNTIL 2 DO -- **********

DO 800 NN = 2, N
EN = N + 2 - NN
NA = EN- I
ALMR = ALFR(EN)
ALMI = ALFI(EN)
BETM = BETA(EN)

********** FOR I=EN-I STEP -1 UNTIL I DO -- **********

DO 700 II = I, NA
I =EN- II
R=O.O
RI = 0.0
M=I+I

DO 610 J = M, EN
T = BETM * AR(I,J) - ALMR * BR(I,J) ÷ ALMI * BI(I,J)
TI = BETM * AI(I,J) - ALMR * BI(I,J) - ALMI * BR(I,J)

IF (J .EQ. EN) GO TO 605
XI = T * BI(J,EN) + TI * BR(JoEN)
T = T * BR(J,EN) - TI * BI(J,EN)
TI = XI
R=R+T
RI = RI + TI

CONTINUE

T = ALMR * BETA(1) - BETM * ALFR(1)
TI = ALMI * BETA(1) - BETM * ALFI(I)
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C

C
C
C

C

C

C

C
C

C

C

700

IF (T .EQ. 0.0 .AND. TI .EQ. 0.0) T = EPSB
Z3 = CMPLX(R,RI) / CMPLX(T,TI)
BR(I,EN) - REAL(Z3)
BI(I,EN) = AIMAG(Z3)

CONTINUE

800 CONTINUE
********** END BACK SUBSTITUTION.

TRANSFORM TO ORIGINAL COORDINATE SYSTEM.
FOR J=N STEP -I UNTIL 2 DO -- **********

DO 880 JJ = 2, N
J = N + 2 - JJ
M = J - I

DO880 I = I, N

860

DO 860 K = I, M

ZR(I,J) = ZR(I,J) + ZR(I,K) _ BR(K,J) - ZI(I,K) * BI(K,J)
ZI(I,J) = ZI(I,J) + ZR(I,K) BI(K,J) + ZI(I,K) " BR(K,J)

CONTINUE

880 CONTINUE
*****'**** NORMALIZE SO THAT MODULUS OF LARGEST

COMPONENTOF EACH VECTORIS I **********
DO 950 J = I, N

930

DO g30 I = 1, N
IF(I .EQ. 1) IS = ABS(ZR(I,J))
R = ABS(ZR(I,J))
IF (R .GE. T5) THEN
TS = R
I5=I

ELSE
ENDIF

CONTINUE

940

DO 940 I = 1, N
T6 = CMPLX(ZR(I,J),ZI(I,J))/CMPLX(ZR(IS,J),ZI(IS,J))

ZR(I,J I = REAL(T6)Zl(Z,O = AIMAG(T6)
CONTINUE

C
gSO CONTINUE

C
1001 RETURN

C ********** LAST CARDOF CQZVEC**********
END

subroutine cg(nm,n,ar,al,wr,wl,matz,zr,zl,fvl,fv2,fv3,1err)

integer n,nm,lsl,is2,1err,matz
double precision ar(nm,n),al(nm,n),wr(n),wi(n),zr(nm,n),z1(nm,n),
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c
c

c
C

c
C

c
c

C
c

C
C

C
C

c
c

c
c
C

c
C

C
C

C
C

C
c

C
C

C
C

C
C

c
C

C
C

c
C

c
c

fvl (n), fv2 (n), fv3 (n)

this subroutine calls the recommended sequence of
subroutines from the etgensystem subroutine package (eispack)
to find the eigenvalues and eigenvectors (if desired)
of a complex general matrix.

on input

nm must be set to the row dimension of the two-dimensional
array parameters as declared tn the calling program
dimension statement.

n is the order of the matrix a-(ar,al).

ar and al contain the real and imaginary parts,
respectively, of the complex general matrix.

matz is an integer variable set equal to zero if
only etgenvalues are desired, otherwise it is set to
any non-zero integer for both eigenvalues and eigenvectors.

on output

wr and wl contain the real and imaginary parts,
respectively, of the elgenvalues.

zr and zl contain the real and imaginary parts,
respectively, of the eigenvectors lf matz is not zero.

lerr is an integer output variable set equal to an error
completion code described In the documentation for c_r
and c_r2. the normal completion code Is zero.

fvl, fv2, and fv3 are temporary storage arrays.

questions and comments should be directed to burton s. garbow,
mathematics and computer science dlv, argonne natlonal laboratory

this version dated august 1983.

if (n .le. nm) go to I0
ierr = I0 * n
go to 50

I0 call cbal(nm,n,ar,al,lsl,ls2,fvl)
call corth(nm,n,lsl,ls2,ar,ai,fv2,fv3)
if (matz .ne. O) go to 20
.......... find eigenvalues only ..........
call comqr(nm,n,lsl,is2,ar,al,wr,wi,ierr)
go to 50
.......... ftnd both etgenvalues and elgenvectors ..........

20 call comqr2(nm,n,lsI,Is2,fv2,fv3,ar,ai,wr,wl,zr,zi,lerr)
If (ierr .ne. O) go to 50
call cbabk2(nm,n,isl,lsZ,fvl,n,zr,zl)

50 return
end
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subroutine cbabk2(nm,n,low,tgh,scale,m,zr,zl)

integer i,J,k,m,n,li,nm, igh,low
double precision scaie(n),zr(nm,m),zi(nm,m)
double precision s

this subroutine ts a translation of the algol procedure
cbabk2, which Is a complex verslon of balbak,
num. math. ]3, Zg3-304(lg6g) by parlett and reinsch.
handbook for auto. comp., vo1.tt-11near algebra, 315-326(1971).

thts subroutine forms the etgenvectors of a complex general
matrix by back transforming those of the corresponding
balanced matrix determined by cbal.

on input

nm must be set to the row dimension of two-dtmansional
array parameters as declared tn the calltng program
dimension statement.

n is the order of the matrix.

low and tgh are integers determined by cbal.

scale contains Information determining the permutations
and scaling factors used by cbal.

m Is the number of eigenvectors to be back transformed.

zr and zt contain the real and imaginary parts,
respectively, of the etgenvectors to be
back transformed tn their first m columns.

on output

zr and zt contain the real and imaginary parts,
respectively, of the transformed etgenvectors
tn thetr ftrst m columns.

questions and comments should be directed to burton s. garbow,
mathematics and computer science div, argonne nationa] laboratory

this version dated august 1983.

100

If (m .eq. O) go to 200
if (tgh .eq. low) go to 120

do 110 i = low, igh
s = scale(i)

.......... left hand eigenvectors are back transformed
If the foregoing statement ts replaced by
s=l.0dO/scale(t) ...........

do I00 J = 1, m
zr(l,J) = zr(l,J) * s
zl(i,J) = zl(l,J) * s

continue
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i10 continue

.......... for i=1ow-] step -1 untll I,
Igh+I step I unt11 n do -- ..........

120 do 140 II = I, n
I=II

If (i .ge. low .and. i .le. Igh) go to 140
If (I .It. low) I = low- 11
k = scale(i)
If (k .eq. I) go to 140

130

do 130 J = 1, m
s = zr(l,J)
zr(t,J) = zr(k,J)
zr(k,J) = s
s = zl (i,J)
zl(l.J) = zl(k,J)
zi(k,J) : s

continue

340 continue

200 return
end
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subroutine conKlr2(nm,n,low,lgh,ortr,ortl,hr,hi,wr,wJ,zr,zl,ierr)
MESHED overflow control WITH vectors of isolated roots (10/19/89 BSG)

MESHEDoverflow control WITH triangular multtply (10/30/89 BSG)

integer l,j,k,l,m,n,en,ll,JJ,ll,nm,nn,lgh,lpl,
x Itn,lts,low,lpl,enml,lend,lerr
double precision hr(nm,n),hl(nm,n),wr{n),wl(n),zr(nm,n),zl(nm,n),
x ortr(Igh),ortl(Igh)
double precision sl,sr,tl,tr,xl,xr,yl,yr,zzl,zzr,norm,tstl,tstZ,
x pythag

this subroutine is a translation of a unitary analogue of the
algol procedure comlr2, num. math. 16, 181-204(1970) by peters
and wilkinson.
handbook for auto. comp., vol.ll-llnear algebra, 372-395(Ig71).
the unitary analogue substitutes the qr algorithm of francis
(comp. jour. 4, 332-345{1962)) for the Ir algorithm.

thts subroutine finds the etgenvalues and eigenvectors
of a con_Dlex upper hessenberg matrix by the qr
method, the elgenvectors of a co_lex general matrix
can also be found if corth has been used to reduce
this general matrix to hessenberg form.

on input

nm must be set to the row dimension of two-dimensional

array parameters as declared in the calling program
dimension statement.

n Is the order of the matrix.

low and Igh are Integers determined by the balanclng
subroutine cbal. if cbal has not been used,
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set low=1, lgh=n.

ortr and ortl contain Informatlon about the unitary trans-
formations used In the reduction by corth, If performed.
only elements low through Igh are used. If the eigenvectors
of the hessenbe_ matrix are desired, set ortr(J) and
orti(j) to 0._o for these elements.

hr and ht contain the real and imaginary parts,
respectively, of the complex upper hessenberg matrix.
their lower triangles below the subdtagonal contatn further
Information about the transformations which were used tn the
reduction by corth, if performed, tf the etgenvectors of
the hessenberg matrtx are desired, these elements may be
arbitrary.

on output

ortr, oft1, and the upper hessenberg portions of hr and ht
have been destroyed.

wr and wt contatn the real and Imaginary parts,
respectively, of the etgenvalues, tf an error
extt Is made, the etgenvalues should be correct
for tndtces terr+l,...,n.

zr and zt contatn the real and imaginary parts,
respecttvelyo of the etgenvectors, the etgenvectors
are unnor_ltzed, tf an error extt ts made, none of
the elgenvectors has been found.

terr ts set to
zero for normal return,
J tf the ltmtt of 30*n iterations ts exhausted

while the J-th elgenvalue is being sought.

calls cdtv for complex division.
calls csroot for complex square root.
calls pythag for dsqrt(a*a + b'b) .

questions and comments should be directed to burton s. garbow,
mathematics and computer science dtv, argonne nattonal |aboratory

this version dated october 1989.

lerr : 0

.......... initialize elgenvector matrix ..........
do 101 j = 1, n

do I00 i = 1, n
zr(l,J) = O.OdO
zl(l,J) = O.OdO

I00 continue
zr(J,J) - l.OdO

I01 continue
.......... form the matrlx of accumulated transformations

from the information left by corth ..........

lend - Igh - low - I

-252-



if (iend) 180, 150, 105

c .......... for i=Igh-1 step -1 untll 1ow+1 do -- ..........
105 do 140 11 = 1, lend

i = igh - il
if (ortr(i) .eq. O.OdO .and. orti(i) .eq. O.OdO) go to 140

if (hr(i,i-1) .eq. O.OdO .and. hi(i,i-1) .eq. O.OdO) go to 140
c .......... norm below is negative of h formed In corth ..........

norm = hr(i,1-1) * ortr(i) + h1(i,l-1) * ortl(i)

ipl = I +I

C

C

C

C

C

C

II0

do II0 k = ip], Igh
ortr(k) = hr(k,l-l)
orti(k) = hl(k,i-l)

continue

do 130 j = I, Igh
sr = O.OdO
sl = O.OdO

115

do 115 k = I, Igh
sr = sr + ortr(k) * zr(k,j) + ortl(k) * zl(k,J)
sl = sl + ortr(k) * zl(k,J) - ortl(k) * zr(k,J)

continue

sr = sr / norm

sl = sl / norm

120

do 120 k = i, igh
• zr(k,j) = zr(k,J) + sr* ortr(k) - sl * orti(k)

zl(k,j) = zl(k,J) + sr * ortl(k) + sl * ortr(k)
continue

130 continue

140 continue

.......... create real subdiagonal elements ..........
150 1 = low + 1

do 170 I = I, igh

11 = mlnO(l+1,1gh)

if (hl(i,i-1) .eq. O.OdO) go to 170
norm = pythag (lhr(i,i-I), hi(i,i-I) )

yr = hr(i,i-1) / norm
yl = hl(i,i-1) / norm

hr(i,1-1) = norm
hi(l,1-1) = O.OdO

155

do 155 j = i, n
sl = yr * hi (l,J) - yi * hr(i,j)
hr(i,j) = yr * hr(i,j) + yi * hi(i,j)

hl(i,j) = sl
continue

160

do 160 j = I, 11

sl = yr * hl (J,i) + yl * hr(J,i)
hr(J,l) --yr * hr(J,l) - yl * hi(J,i)

hl(j,l) _ st
contl nue

do 165 J = low, igh
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si = yr * zi(j,i) + yi * zr(j,i)
zr(j,i) = yr * zr(j,l) - yl * zi(j,l)
zi(j,l) = si

continue

170 continue
.......... store roots Isolated by cbal ..........

]80 do 200 i = 1, n
if (i .ge. low .and. t .le. igh) go to 200

wr(i) = hr(i,lllwi(i) hi(i,
200 continue

en = tgh
tr = O.OdO
ti = O.OdO
itn = 30*n

c .......... search for next elgenvalue ..........
220 if (en .lt. low) go to 680

its = 0
enml = en - 1

c .......... look for single small sub-diagonal element
c for |=en step -1 untt| ]ow do -- . .........

240 do 260 l l = low, en
1 = en + low - ll
If (l .eq. low) go to 300
tstl = dabs(hr(l-l,l-1)) + dabs(ht(l-l,l-1))

x + dabs(hr(l,l)) + dabs(hl(1,l))
tst2 = tstl + dabs(hr(1,l-1))
if (tst2 .eq. tstl) go to 300

260 continue
c .......... form shtft ..........

300 tf (l .eq. en) go to 660
if (ttn .eq. O) go to 1000
if (its .eq. 10 .or. Its .eq. 20) go to 320
sr = hr(en,en)
si = hl(en,en)
xr = hr(enml,en) * hr(en,enml)
xi = ht(enml,en) * hr(en,enml)
tf (xr .eq. O.OdO .and. xi .eq. O.OdO) go to 340
yr = (hr(enml,enml I - sr) / 2.0dO
yi = (hi(enml,enml) st) / 2.0dO

• * ** * *call csroot(yr Z-yl ?+xr,Z.OdO yr yl+xl,zzr,zzi)
If (yr zzr + yi zzl .ge. O.OdO) go to 310
zzr = -zzr
zzl = -zzt

310 call cdiv(xr,xi,yr+zzr,yt+zzi,xr, xt)
sr = sr - xr
si = st - xi

go to 340
c .......... form exceptional shift ..........

320 sr = dabs(hr(en,enml)) + dabs(hr(enml,en-2))
sl = O.OdO

340 do 360 t = low, en
hr(i,l) = hr(l,l) - sr
hi(t,t) = h1(t,t) - st

360 continue

tr = tr + sr
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tl = tl + sl
its = its + ]
Itn = Itn - ]

.......... reduce to triangle Crows) ..........
Ipl = ] + I

do 500 i = Ipl, en
sr = hr(i,i-1)
hr(i,i-l) = O.OdO

norm --pythag(p@thag(hr(i-l,I-I),hi(I-I,I-I)),sr)
xr = hr(i-l,l-l) / norm
wr(i-l) = xr
xi = hl(i-l,l-l) / norm
wl(l-I) = xl
hr(l-l,i-1) = norm
hi(I-I,I-I) = O.OdO
hi(l,l-l) = sr / norm

490

do 490 j = I, n
yr = hr(i-l,j)
yl = hi(i-l,J)
zzr = hr(i,j)
zzl - hi(l,J)
hr(i-l,J) = xr * yr + xl * yl + hl(l,i-l) * zzr
hl(l-l,J) - xr * yl - xl * yr + hl(l,i-l) * zzi
hr(l,J) = xr * zzr - xl * zzl - hi(l,l-l) * yr
hi(l,j) --xr * zzi + xi * zzr - hl(i,l-l) * yi

contlnue

500 continue

st = ht(en,en)
tf (st .eq. O.OdO) go to 540
norm = pythag(hr(en,en),sl)
sr = hr(en,en) / norm
sl = sl / norm
hr(en,en) = norm
ht(en,en) = O.OdO
if (en .eq. n) go to 540
ipl = en + 1

do 520 J = ipl, n
yr = hr(en,j)
yi = hl(en,j)
hr(en,J) = sr * yr + sl * yi
hl(en,J) = sr * yi - si * yr

520 continue

.......... inverse operation (columns) ..........
540 do 600 J = lpI, en

xr = wr(J-l)
xi = ,i(j-])

do 580 i = I, j
yr = hr(l,J-l)
yi = O.OdO
zzr = hr(l,J)
zzl = hi(i,J)
tf (t .eq. J) go to 560
yl : hi(l,J-l)
hi(i,J-l) --xr * yl + xl * yr + hi{J,J-l) * zzl
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58O

hr(i,J-l) --xr * yr - xl * yi + hi(J,j-l) * zzr
hr(i,j) = xr * zzr + xi * zzl - hi(j0j-l) * yr
hl(i0j) = xr * zzi - xi * zzr - hi(j,j-l) * yi

contihue

59O

do 590 i = low, lgh
yr = zr(l,J-I)
yl = zt{i,J-1)
zzr = zr{i,J)
zzi = zi (i,j)
zr(1,J-1) = xr* yr - xi * yt + ht(J,J-I) * zzr
zl(l,J-l) = xr * yl + xl * yr + hi(J,J-l) * zzl
zr(i,J) = xr * zzr + xi * zzl - hi(J,J-l) * yr
zl(i,J) = xr * zzl - xi * zzr - hl(j,J-l) * yl

contlnue

600 continue

tf (sl .eq. O.OdO) go to 240

do 630 t = 1, en
yr = hr(l,en)
yl = hl(l,en}

hr(i,enI = sr * yr - sl * yl
hl(l,enj = sr * yl + sl * yr

630 continue

640

do 640 t = low, lgh
yr zr(i,en)
yl ==zi(i,en)

zr(i,en) - sr * yr - sl * yl
zl(i,en) = sr*yl + sl *yr

continue

go to 240
.......... a root found ..........

660 hr(en,en) = hr(en,en) + tr
wr(en) = hr(en,en)
hi(en,en) = ht(en,en) + ti
wt(en) = ht(en,en)
en = enml
go to 220
.......... a]] roots found, backsubstitute to find

vectors of upper trtangu]ar form ..........
680 norm = O.OdO

do 7ZO 1 = 1, n

do 720 j = i, n
tr = dabs(hr(l,j)) + dabs(hl(i,j))
if (tr .gt. norm) norm = tr

720 continue

if (n .eq. 1 .or. norm .eq. O.OdO) go to 1001
.......... for en=n step -1 unt11 2 do -- . .........
do 800 nn = 2, n

en = n + Z - nn
xr = wr(en)
xi = wl(en}
hr(en,en) = l.OdO
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hi(en,en) = O.OdO
enm! = en - ]

.......... for i=en-1 step -I until
do 780 ii = 1, enml

i = en - ii
zzr = O.OdO
zzi = O.OdO
ipl = i + ]

I do -- ..........

740

do 740 j = Ipl, en
zzr = zzr + hr(l,j) * hr(j,en) - hi(i,J) * hi(J,en)
zzl = zzi + hr(l,J) * hl(j,en) + hi(i,J) * hr(j,en)

continue

yr = xr - wr(i)
yl = xi - wi(1)
if (yr .ne. O.OdO .or. yl .ne. O.OdO) go to 765

tstl = norm
yr = tstl

760 yr = O.OldO * yr
tstZ = norm+ yr
if (tst2.0t. tstl) go to 760

765 continue
call cdtv(zzr,zzt,yr,yl,hr(l,en),hl(t,en))

.......... overf]ow control ..........
tr = dabs(hr(t,en)) + dabs(ht(t,en))
if (tr .eq. O.OdO) go to 780
tstl = tr
tst2 = tstl + l.OdO/tstl
If (tst2 .gt. tstl) go to 780
do 770 J = 1, en

hr(J,en) = hr(j,en)/tr
hl(J,en) = h1(J,en)Itr

770 continue

780 conttnue

800 continue
.......... end backsubstitutton ..........
.......... vectors of isolated roots ..........
do 1340i = 1, N

If (I .ge. low .and. i .le. Igh) go to 840

820

do 820 J = I, n
zr(i,J) = hr(l,J)
zt(t,J) = hl(l.J)

continue

840 continue
.......... multiply by transformation matrix to give

vectors of orlginal full matrix.
for j=n step -i unti] low do -- ..........

do 880 Jj = low, N
j = n + low - jj
m = minO(J,igh)

do 880 i = low,
zzr = O.OdO
zzl = O.OdO

lgh
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do 860 k = low, m
zzr : zzr + zr(l,k) * hr(k,J) - zl(l,k) * hl(k,j)
zzi = zzi + zr(i,k) * hl(k,J) + zl(l,k) * hr(k,J)

continue

zr(l,J) -- zzr
zi(l,j) _ zzi

continue

go to 1001
.......... set error -- all etgenvalues have not

converged after 30*n Iterations ..........
lerr = en
return
end
subroutine comqr(nm,n, low, tgh,hr,hi,wr,wl,terr)

integer t,J,l,n,en, ll,nm, tgh,ttn,lts,low, lpl,enml,lerr
double precision hr(nm,n),hl(nm,n),wr(n),wl(n)
double precision sl,sr,tl,tr,xl,xr,yi,yr,zzl,zzr,norm,tstl,tst2,

x pythag

this subroutine ts a translation of a unitary analogue of the
algol procedure comlr, num. math. 12, 369-376(1968) by martin
and wilkinson.
handbook for auto. comp., vol.tt-ltnear algebra, 396-403(1971).
the unitary analogue substitutes the qr algorithm of francis
(comp. Jour. 4, 332-345(1962)) for the lr algorithm.

this subroutine finds the elgenvalues of a complex
upper hessenberg matrix by the qrmethod.

on tnput

nm must be set to the row dimension of two-dimensional
array parameters as declared in the calling program
dimension statement.

n ts the order Of the matrix.

low and tgh are integers determined by the balancing
subroutine cbal. tf cbal has not been used,
set low=l, lgh=n.

hr and ht contain the real and imaginary parts,
respectively, of the complex upper hessenberg matrix.
their lower triangles below the subdtagonal contain
Information about the unitary transformations used in
the reduction by corth, if performed.

on output

the upper hessenberg portions of hr and hi have been
destroyed, therefore, they must be saved before
calltng comqr if subsequent ca]culatton of
eigenvectors ts to be performed.

wr and wt contain the real and imaginary parts,
respectively, of the eigenvalues, if an error
exit ts made, the etgenvalues should be cornect
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for indices lerr+l, ....n.

ierr is set to

zero for normal return,
J if the limit of 30*n iterations is exhausted

while the j-th elgenvalue is being sought.

calls cdiv for complex division.
calls csroot for complex square root.
calls pythag for dsqrt(a*a + b'b) .

questions and comments should be directed to burton s. garbow,
mathematics and computer science div, argonne national laboratory .

this version dated august 1983.

C

C

C

lerr = 0

If (low .eq. Igh) go to 180

.......... create real subdlagonal elements ..........
1 = low + I

do 170 t = 1, lgh
ll = mtnO(t+l,tgh)
tf (ht(l,t-1) .eq. O.OdO) go to 170
norm = pythag(hr(t,t-1),ht(t,t-1))
yr = hr(l,l-1) / norm
yi = hi(i,1-1) / norm

hr(i,i-l) = norm
hl(I.I-I)= O.OdO

155

do 155=J = t, tgh
sl yr * h1(l,J) - yl * hr(l,J)
hr(i,J) = yr " hr(l,j) + yl * hl(i,j)

hi(i,J) = si
contl hue

160

do 160 j = low, II
sl = yr* h1(j,l) + yl * hr(j,l)

hr(J,l) = yr * hr(J,l) - yl * h1(j,l)
hl(J,l) = sl

continue

170 continue

.......... store roots isolated by cbal ..........

180 do 200 I = I, n
if (I .ge. low .and. i .le. Igh) go to 200
wr(1) = hr(i,i)

wi(1) = hi(i,i)
200 continue

220

en = Igh
tr = O.OdO

ti = O.OdO
Itn = 30*n

.......... search for next eigenvalue ..........

if (en .It. low) go to 1001
its = 0

enml = an - I
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c .......... look for stngle small sub-diagonal element
c for l=en step -1 until low dO -- . .........

240 do 260 11 = low, en
1 = en + low - 11

If (1 .eq. low) go to 300
tstl - dabs(hr(1-I,l-1)) + dabs(hi(I-I,1-1))

x + dabs(hr(1,1)) + dabs(hi(I,1))
tst2 = tstl + dabs(hr(lol-I))
tf (tst2 .eq. tstl) go to 300

260 continue
c .......... form shift ..........

300 if (1 .eq. en) go to 660
If (ltn .eq. O) go to 1000
tf (Its .eq. 10 .or. tts .eq. ZO) go to 320
sr - hr(en,en)
st = hl(en,en)
xr = hr(enml,en) * hr(en,enml)
xt = hi(enml,en) * hr(en,enml)
If (xr .eq. O.OdO .and. xt .eq. O.OdO) go to 340
yr = (hr(enml,enml) - sr) / 2.0dO
yt = (hi(enml,enml) - st) / Z.OdO
cal I csroot (yr**2-yl**Z+xr,2.0dO*yr*yt+xt, zzr,zzt )
tf (yr* zzr + yt * zzi .ge. O.OdO) go to 310
zzr : -zzr
zz| = -zzl

310 cal 1 cdlv(xr,xt ,yr+zzr,yl+zzt ,xr, xt)
Sr = sr - xr

st = st - xi

go to 340
c .......... form exceptional shift ..........

320 sr = dabs(hr(en,erml)) + dabs(hr(enml,en-2))
sl = O.OdO

C

C

340 do 360 I = low, en
hr(J,J) = hr(J,J) - sr
hi(J,i) : hi(Jo|) - si

360 contlnue

tr = tr + sr

tl = tt + sl
1is =tts + 1
ttn =ttn - 1

.......... reduce to triangle (rows)
lpl = 1 + I

do 500 t = lpl, en
sr : hr(J,J-1)
hr(i,t-1) = O.OdO
norm = pythag(pythag(hr(i-l,l-I),hi (i-I, i-1)) ,sr)
xr = hr(i-1,i-1) / norm

wr(l-l) = xr

xi = hi(i-l,i-1) / norm
wi(i-l) = xi

hr(l-l,i-1) = norm
hi(t-l,t-1) = O.OdO
hi(i,i-1) = sr / norm

do 490 J = I, en
yr = hr(i-l,J)
yl = hl(l-l,J)
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49O

5OO

540

560

zzr : hr(i,j)
zzt : hi(l,J)

hr(i-l,J) = xr * yr + xi * yi + hi(i,i-]) * zzr
hi(i-l,J) = xr* yi - xi * yr + hi(|,i-1) * zzl
hr(i,j) = xr * zzr - xl * zzi - hi(i,i-1) * yr
hi(i,J) = xr * zzl + xl * zzr - hl(i,1-1) * yi

continue

continue

st = hi(en,en)
if (si .eq. O.OdO) go to 540
norm = pythag(hr(en,en),sl)
sr = hr(en,en) / norm
si = si / norm
hr(en,en) = norm
hi(en,en) = O.OdO

.......... inverse operation (columns) ..........
do 600 j = Ipl, en

xr = wr(j-1)
xl = wi(j-1)

58O

63O
C

do 580 i = ], j
yr = hr(l,J-1)

, yi = O.OdO
zzr = hr(i,J)
zzi = hi(i,j)
If (i .eq. J) go to 560
yi = hi(i,J-1)
hi(i,J-1) = xr* yl + xl * yr* hi(j,J-1) * zzi
hr(l,J-1) = xr * yr- xl * yl • hi(J,J-1) * zzr

hr(l,J) = xr **zzr + xl * zzl - hi(J,J-1) * yr
hl(l,J) = xr zzl - xl zzr ht(J,J-1) * yl

continue

600 continue

if (si .eq. O.OdO) go to 240

do 630 i = ], en
yr = hr(i,en)
yl = hi(i,en)
hr(i,en) = sr * yr - si * yi
hi(l,en) = sr *yl + sl * yr

continue

go to 240
c .......... a root found ..........
660 wr(en) = hr(en,en) + tr

wi(en) = hi(en,en) + ti
en = enml

go to 220
c .......... set error -- al| eigenva|ues have not
c converged after 30*n iterations ..........
1000 ierr = en
1001 return

end

subroutine cdlv(ar,al,br,bl,cr,cl)
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c

c
c

double precision ar, at,br,bi0cr,ct

complex division, (cr,cl) = (ar,ai)/(br,bi)

double precision s,ars,ais,brs,bls
s = dabs(br) + dabs(bi)
ars = ar/s
als = ai/s
brs = br/s
bls = bi/s
S = brs**2 + bts**2
cr = (ars*brs + ats*bts)/s
ci = (ais*brs - ars'bis)/s
return
end

subroutine csroot(xr,xi,yr,yl)
double precision xr,xl,yr,yi

(yr,yl) = complex dsqrt(xr,xl)
branch chosen so that yr .ge. 0.0 and sign(yi) .eq. slgn(xl)

double precision s,tr,tt,pythag
tr = xr
tt = xt
s = dsqrt(O.5dO*(pythag(tr,tt) + dabs(tr)))
if (tr Lge. o.odO) yr = s
tf (tt .lt. O.OdO) s -
tf (tr .le. O.OdO) y|== :

If (tr .lt. O.OdO)yr 0.5dO*(tt/yt)
If (tr .gt. O.OdO) yl ==0.5dO*(tt/yr)
return
end

C

C
C
C

C

C
C

C
C

c
c
c

c
C

C

C
C

C
C

subroutine corth(nm,n,low,lgh,ar,al,ortr,ortl)

integer l,J,m,n,ll,JJ,la,mp,nm,lgh,kpl,low
double precision ar(nm,n),ai(nm,n),ortr(igh),ortl(Igh)
double precision f,g,h,fl,fr,scale,pythag

thts subroutine ts a translation of a complex analogue of
the algol procedure orthes, num. math. 12, 349-368(1968)
by martin and wilkinson.
handbook for auto. comp., vol.it-ltnear algebra, 339-358(1971).

given a complex general matrix, thls subroutine
reduces a submatrix situated in rows and columns
low through igh to upper hessenberg form by
unitary similarity transformations.

on input

nmmust be set to the row dimension of two-dimensional
array parameters as declared in the calling program
dimension statement.

n Is the order of the matrix.
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c
c
c

c
C

c
c

c
c
c

c
c

C
C

C

C
C
c

c
C
C

C
C

C

C
c

low and Igh are integers determined by the balancing
subroutine cbal. if cbal has not been used,
set low=l, Igh=n.

ar and ai contain the real and imaginary parts,
respectively, of the complex input matrix.

on output

ar and ai contain the real and imaginary parts,
respectively, of the hessenberg matrix, information
about the unitary transformations used in the reduction
is stored In the remaining trlangles under the
hessenberg matrix.

ortr and orti contain further informationabout the
transformations, only elements low through Igh are used.

calls pythag for dsqrt(a*a + b'b) .

questions and comments should be directed to burton s. garbow,
mathematics and computer science dlv, argonne natlonal laboratory

this version dated august 1983.

la = Igh - I
kpl = low + I
if (la .It. kpI) go to 200

90

do 180 m = kpl, la
h = O.OdO
ortr(m) = O.OdO
ortt(m) = O.OdO
scale = O.OdO

.......... scale column (algol tol then not needed)
do go i = m, tgh
scale = scale + dabs(ar(l,m-l)) + dabs(al(l,m-l))

I00

if (scale .eq. O.OdO) go to 180
mp = m + Igh

.......... for l=igh step -I until m do -- ..........
do 100 ii = m, igh

I = mp - ii
ortr(1) = ar(i,m-I) / scale
orti(1) = ai(i,m-l) / scale
h = h + ortr(i) * ortr(1) + orti(i) * orti(i)

continue

g = dsqrt(h)
f = pythag(ortr(m),ortl(m))
If (f .eq. O.OdO) go to 103
h=h+f*g
g=g/f
ortr(m) = (1.0dO + g) * ortr(m)
ortl(m) = (l.OdO + g) * ortl(m)
go to 105

103 ortr(m) = g
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C

C

ar(m,m-1) = scale
.......... form (t-(u*ut)/h) * a ..........

105 do 130 J = m, n
fr = O.OdO
fi = O.OdO

.......... for t=tgh step -1 untl] m do -- . .........
do 110 Ii = m, lgh

I=_o- 11
fr = fr + ortr(t) * ar(1,J) + orti(i) * at(l,J)
ft = fi + ortr(t) * al(l,J) - ortl(l) * ar(1,J)

110 conttnue

fr = fr / h
ft = ft / h

120

do 120 1 = m, Igh

ar(l,J) = ar(t _I- fr **ortr(1) + fl :ortl(1)at(t,J) = at(l', fr ortt(t) - ft ortr(1)
contIhue

130 conttnue
.......... form (t-(u*ut)/h)*a*(t- (u*ut)/h) ..........

do 160 t = 1, tgh
fr = O.OdO
fl = O.OdO

.......... for J-tgh step -1 until m do -- . .........
do 140 JJ = m, tgh

J = =_- JJ

fr = fr + ortr(J) **ar(l,J) - ortl(j) * al(1,J)
fl = fl + ortr(J) al(l,J) + ortl(J) ar(l,J)

140 conttnue

fr = fr / h
ft = fl / h

150

do 150 J = m, tgh
ar(1,J) = ar(l,J) - fr * ortr(J) - fl * ortl(J)
al(l,J) = al(l,J) + fr * ortl(J) - fl * ortr(J)

continue

160 continue

ortr(m) = scale * ortr(m)
orti(m) = scale* orti(m)

ar(m,m-1) = -g : ar(m,m-1)
al(m,m-1) = -g al(m,m-1)

180 continue

200 return
end

double precision function pythag(a,b)
double precision a,b

finds dsqrt(a**2+b**2T without overflow or destructive underflow

double precision p,r,s,t,u
p = dmaxl(dabs(a),dabs(b))
tf (p .eq. O.OdO) go to 20
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r = (dmlnI(dabs(a),dabs(b))/p)**2
I0 continue

t = 4.0dO + r

If (t .eq. 4.0dO) go to 20
s = r/t
u = l.OdO + 2.0dO*s

p = u*p
r : (s/u)**2 * r

go to lO
ZO pythag = p

return
end

C

c

C

C

C

C

C

C

C

C

c

C

c

C

c

C

C

C

C

c

c

C

C

C

c

c

C

C

C

C

c

C

C

C

subroutine cbal(nm,n,ar,al,low,lgh,scale)

integer l,J,k,l,m,n,Jj,nm,lgh,low,iexc
double precision ar(nm,n),al(nm,n),scale{n)
double precision c,f,g,r,s,b2,radix
logical noconv

this subroutine is a translation of the algol procedure
cbalance, which is a complex version of balance,
num. math. 13, 2g3-304(1969) by parlett and relnsch.
handbook for auto. comp., vol.ll-llnear algebra, 315-326(1971).

this subroutine balances a complex matrix and Isolates
eigenvalues whenever possible.

on input

nm must be set to the row dimension of two-dimensional

array parameters as declared in the calling program
dimension statement.

n Is the order of the matrix.

ar and al contain the real and imaginary parts,
respectively, of the complex matrix to be balanced.

on output

ar and al contain the real and imaginary parts,
respectively, of the balanced matrix.

low and igh are two integers such that ar(i,j) and ai(l,J)
are equal to zero if
(I) I is greater than j and
(2) J=l,...,low-I or i=igh+I,...,n.

scale contains information determining the
permutations and scaling factors used.

suppose that the principal submatrlx in rows low through igh
has been balanced, that p{j) denotes the index interchanged
wlth J during the permutation step, and that the elements
of the diagonal matrix used are denoted by d{l,J), then

scale(J) = p{J), for J = l,...,low-I
= d(j,J) J = low,...,Igh
= p(j) J = igh+l,...,n.
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C
c
C
C

C
C
C

C

C
c

C
c
C

C
C

C
C

the order in which the interchanges are made Is n to Igh+l,
then I to low-l.

note that 1 is returned for tgh if tgh ts zero formally.

the algol procedure exc contained In cbalance appears tn
cbal tn ltne. (note that the algol roles of identifiers
k,1 have been reversed.)

arithmetic ts real throughout.

questions and comments should be directed to burton s. garbow,
mthemttcs and computer science dlv, argonne national laboratory

this verston dated august 1983.

c

radix = 16.0d0

20

b2 = radix * radix
k=l
1 =n
go to 100
.......... 1n-line procedure for row and

colmn exchange ..........
scale(m) = J
if (J .eq. m) go to 50

do 30 | = I, 1
f = ar(t,J)
ar(l,J) = ar(t,m)
ar(l,m) = f
f = al(l,J)
al(l,J) - al(l,m)
al(l,m) = f

30 continue

do 40 I = k, n
f = ar(J,l)
ar(J,l) = ar(m,l)
ar(m,l) = f
f = ai(J,l)
al(J,l) = al(m,l)
al(m,l) = f

40 contl nue
C

50 go to (80,130), texc
c .......... search for rows Isolating an eigenvalue
c and push them down ..........

80 if (1 .eq. I) go to 280
1 = l - l

c .......... for j=1 step -I until I do -- ..........
lO0 do 120 JJ = 1, 1

J = l + I - JJ

110

do 110 t = 1, l
tf (t .eq. J) go to 110
if (at(J,1) .ne. O.OdO .or. at(j,l)

conttnue
.ne. O.OdO) go to 120
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c

c
c

c

c

m = 1
iexc = I

go to 20
120 continue

go to ]40
.......... search for columns isolating an eigenvalue

and push them left ..........
130 k = k + 1

140 do 170 j = k, 1

150

do ]50 t = k, 1
if (t .eq. J) go to ]5o
if (ar(i,j) .he. O.OdO .or. ai(i,J) .he. O.OdO) go to 170

continue

c

m = k
lexc = 2

go to 20
170 continue

.......... now balance the sub_trlx in rows k to 1 ..........
do 180 t = k, 1

180 scale(t) = 1.0dO
.......... tterattve loop for norm reduction ..........

190 noconv = .false.

do 270 t = k, 1
c = O.OdO
r = O.OdO

do 200 J = k, 1
If (J .eq. i) go to 200

c = c + dabs(ar(J,i)) + dabs(ai(J,1))
r = r + dabs{ar(l,J)) + dabs(al{l,J))

200 continue

c .......... guard against zero c or r due to underflo, ..........
if (c .eq. O.OdO .or. r .eq. O.OdO) go to 270
g = r / radix
f = l.OdO
s=c+r

2]0 if (c .ge. g) go to 220
f = f * radix
c=c*b2
go to 210

220 g = r " radix
230 if (c .It. g) go to 240

f = f / radix
c=c/b2

go to 230
c .......... now balance ..........

240 if ((c + r) / f .ge. 0.95d0 * s) go to 270
g = 1.0dO / f
scale(l) = scale(t) * f
noconv = .true.

do 250 J = k, n
ar(l,J) = ar(i,J) * g
ai(i,J) = ai(i,J) * g
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250 continue

260

do 260 j = i, 1
ar(j,i) = ar(j,i) * f
ai(j,i) = ai(j,i) * f

continue

270 continue

if (noconv) go to 190

280 low = k

igh = l
return
end
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APPENDIX B

SYMBOLS

a

b=

A=

B=

C=

C=

F=

F(t)=

k=

K=

m=

M=

N=

p=

q=

#=
T=

U=

V=

Wnc =

_=

2=

Orthogonality matrix with respect to the A matrix

Orthogonality matrix with respect to the B matrix

A matrix

B matrix

Damping of a single degree of freedom system

Damping matrix of a n by n degree of freedom system

Load vector of a n by n degree of freedom system

Forcing function vector of a n by n degree of freedom system

Stiffness of a single degree of freedom system

Stiffness matrix of a n by n degree of freedom system

Mass of a single degree of freedom system

Mass matrix of a n by n degree of freedom system

Weighing matrix

Inverse of Eigenvalue matrix, m mode by m modes

Eigenvector, n degree by m modes

Eigenvelocity, n degree by m modes

Eigenacceleration, n degree by m modes

Kinetic energy of the system

SWain energy of the system

Potential energy (due to strain and external forces) of the system

Work done by nonconservative forces

Variation taken during two time intervals

Eigenvalue matrix, m mode by m modes

[[ (matt/x) [12= Weighted Euclidean norm of the matrix

(subscriptT) = Refers to measured properties

(supercriptT) = Transpose
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